-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathrender_large_lod.py
154 lines (128 loc) · 6.56 KB
/
render_large_lod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import sys
import yaml
import json
import torch
import torchvision
import time
from tqdm import tqdm
from arguments import GroupParams
from scene import LargeScene
from os import makedirs
from gaussian_renderer import render_lod
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams
from scene.gaussian_model import GatheredGaussian, BlockedGaussian
from utils.large_utils import contract_to_unisphere, get_default_aabb
from utils.camera_utils import loadCam
from utils.general_utils import parse_cfg
def load_gaussians(lp, iteration=30_000, load_vq=False, device='cuda'):
modules = __import__('scene')
with torch.no_grad():
gaussians = getattr(modules, lp.model_config['name'])(lp.sh_degree, device=device, **lp.model_config['kwargs'])
scene = LargeScene(lp, gaussians, load_iteration=iteration, load_vq=load_vq, shuffle=False)
return gaussians, scene
def render_set(lp, model_path, name, iteration, views, model, max_sh_degree, pipeline, background):
avg_render_time = 0
max_render_time = 0
avg_memory = 0
max_memory = 0
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
print(f"Save Path: {os.path.join(model_path, name)}")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
for idx in tqdm(range(len(views)), desc="Rendering progress"):
viewpoint_cam = loadCam(lp, idx, views[idx], 1.0)
# gpu_tracker.track()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
start = time.time()
rendering = render_lod(viewpoint_cam, model, pipeline, background)["render"]
torch.cuda.synchronize()
end = time.time()
avg_render_time += end-start
max_render_time = max(max_render_time, end-start)
forward_max_memory_allocated = torch.cuda.max_memory_allocated() / (1024.0 ** 2)
avg_memory += forward_max_memory_allocated
max_memory = max(max_memory, forward_max_memory_allocated)
# data saving
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(viewpoint_cam.original_image[0:3, :, :], os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
with open(model_path + "/costs.json", 'w') as fp:
json.dump({
"Average FPS": len(views)/avg_render_time,
"Min FPS": 1/max_render_time,
"Average Memory(M)": avg_memory/len(views),
"Max Memory(M)": max_memory,
}, fp, indent=True)
print(f'Average FPS: {len(views)/avg_render_time:.4f}')
print(f'Min FPS: {1/max_render_time:.4f}')
print(f'Average Memory: {avg_memory/len(views):.4f} M')
print(f'Max Memory: {max_memory:.4f} M')
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, load_vq : bool, skip_train : bool, skip_test : bool, custom_test : bool):
with torch.no_grad():
if dataset.aabb is None:
import numpy as np
dataset.aabb = np.load(os.path.join(dataset.source_path, "data_partitions", f"{dataset.partition_name}_aabb.npy")).tolist()
print(f"Use default AABB of {[round(x, 2) for x in dataset.aabb]}")
if custom_test:
dataset.source_path = custom_test
filename = os.path.basename(dataset.source_path)
lod_gs_list = []
org_model_path = dataset.model_path
for i in range(len(dataset.lod_configs)):
dataset.model_path = dataset.lod_configs[i]
lod_gs, scene = load_gaussians(dataset, iteration, load_vq)
print(f"Init LoD {len(dataset.lod_configs)-i} with {lod_gs.get_xyz.shape[0]} points from {dataset.model_path}")
lod_gs = BlockedGaussian(lod_gs, dataset, compute_cov3D_python=pp.compute_cov3D_python)
lod_gs_list.append(lod_gs)
dataset.model_path = org_model_path
num_cell, max_sh_degree = lod_gs_list[-1].num_cell, lod_gs_list[-1].max_sh_degree
loaded_iter, train_cams, test_cams = scene.loaded_iter, scene.getTrainCameras(), scene.getTestCameras()
del lod_gs, scene
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if custom_test:
views = train_cams + test_cams
render_set(dataset, dataset.model_path, filename, loaded_iter, views, lod_gs_list, max_sh_degree, pipeline, background)
print("Skip both train and test, render all views")
else:
if not skip_train:
render_set(dataset, dataset.model_path, "train", loaded_iter, train_cams, lod_gs_list, max_sh_degree, pipeline, background)
if not skip_test:
render_set(dataset, dataset.model_path, "test", loaded_iter, test_cams, lod_gs_list, max_sh_degree, pipeline, background)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
parser.add_argument('--config', type=str, help='train config file path of fused model')
parser.add_argument('--model_path', type=str, help='model path of fused model')
parser.add_argument("--custom_test", type=str, help="appointed test path")
parser.add_argument("--load_vq", action="store_true")
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = parser.parse_args(sys.argv[1:])
if args.model_path is None:
args.model_path = os.path.join('output', os.path.basename(args.config).split('.')[0])
if args.load_vq:
args.iteration = 30000 # apply a default value
# Initialize system state (RNG)
safe_state(args.quiet)
with open(args.config) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
lp, op, pp = parse_cfg(cfg, args)
print(f'Render with resolution {lp.resolution}\n')
render_sets(lp, args.iteration, pp, args.load_vq, args.skip_train, args.skip_test, args.custom_test)