-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdata_partition.py
159 lines (134 loc) · 8.11 KB
/
data_partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import sys
import json
import yaml
import numpy as np
import torch
from tqdm import tqdm
from pathlib import Path
from argparse import ArgumentParser, Namespace
from transforms3d.quaternions import mat2quat
from scene import LargeScene
from scene.gaussian_model import GaussianModel
from gaussian_renderer import render
from utils.general_utils import safe_state, parse_cfg
from utils.large_utils import contract_to_unisphere, get_default_aabb
from utils.loss_utils import ssim
from utils.camera_utils import loadCam_woImage
from arguments import GroupParams
def block_partitioning(cameras, gaussians, args, pp, scale=1.0, quiet=False, disable_inblock=False, simple_selection=False):
xyz_org = gaussians.get_xyz
num_threshold = args.num_threshold
block_num = args.block_dim[0] * args.block_dim[1] * args.block_dim[2]
if args.aabb is None:
torch.cuda.empty_cache()
args.aabb = get_default_aabb(args, cameras, xyz_org, scale)
config_name = os.path.splitext(os.path.basename(args.config))[0]
np.save(os.path.join(args.source_path, "data_partitions", f"{config_name}_aabb.npy"), np.array(args.aabb.detach().cpu()))
else:
assert len(args.aabb) == 6, "Unknown args.aabb format!"
args.aabb = torch.tensor(args.aabb, dtype=torch.float32, device=xyz_org.device)
print(f"Block number: {block_num}, Gaussian number threshold: {num_threshold}")
camera_mask = torch.zeros((len(cameras), block_num), dtype=torch.bool, device=xyz_org.device)
with torch.no_grad():
for block_id in range(block_num):
block_id_z = block_id // (args.block_dim[0] * args.block_dim[1])
block_id_y = (block_id % (args.block_dim[0] * args.block_dim[1])) // args.block_dim[0]
block_id_x = (block_id % (args.block_dim[0] * args.block_dim[1])) % args.block_dim[0]
xyz = contract_to_unisphere(xyz_org, args.aabb, ord=torch.inf)
min_x, max_x = float(block_id_x) / args.block_dim[0], float(block_id_x + 1) / args.block_dim[0]
min_y, max_y = float(block_id_y) / args.block_dim[1], float(block_id_y + 1) / args.block_dim[1]
min_z, max_z = float(block_id_z) / args.block_dim[2], float(block_id_z + 1) / args.block_dim[2]
num_gs, org_min_x, org_max_x, org_min_y, org_max_y, org_min_z, org_max_z = 0, min_x, max_x, min_y, max_y, min_z, max_z
while num_gs < num_threshold:
# TODO: select better threshold
block_mask = (xyz[:, 0] >= min_x) & (xyz[:, 0] < max_x) \
& (xyz[:, 1] >= min_y) & (xyz[:, 1] < max_y) \
& (xyz[:, 2] >= min_z) & (xyz[:, 2] < max_z)
num_gs = block_mask.sum()
min_x -= 0.01
max_x += 0.01
min_y -= 0.01
max_y += 0.01
min_z -= 0.01
max_z += 0.01
block_mask = ~block_mask
sh_degree = gaussians.max_sh_degree
masked_gaussians = GaussianModel(sh_degree)
masked_gaussians._xyz = xyz_org[block_mask]
masked_gaussians._scaling = gaussians._scaling[block_mask]
masked_gaussians._rotation = gaussians._rotation[block_mask]
masked_gaussians._features_dc = gaussians._features_dc[block_mask]
masked_gaussians._features_rest = gaussians._features_rest[block_mask]
masked_gaussians._opacity = gaussians._opacity[block_mask]
masked_gaussians.max_radii2D = gaussians.max_radii2D[block_mask]
for idx in tqdm(range(len(cameras)), desc=f"Block {block_id} / {block_num}"):
bg_color = [1,1,1] if args.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=xyz_org.device)
c = cameras[idx]
viewpoint_cam = loadCam_woImage(args, idx, c, scale)
contract_cam_center = contract_to_unisphere(viewpoint_cam.camera_center, args.aabb, ord=torch.inf)
if simple_selection > 1.0:
# enlarge the box to 1.5x
rate = (simple_selection - 1.0) / 2
min_x -= rate * (org_max_x - org_min_x)
max_x += rate * (org_max_x - org_min_x)
min_y -= rate * (org_max_y - org_min_y)
max_y += rate * (org_max_y - org_min_y)
min_z -= rate * (org_max_z - org_min_z)
max_z += rate * (org_max_z - org_min_z)
if contract_cam_center[0] > min_x and contract_cam_center[0] < max_x \
and contract_cam_center[1] > min_y and contract_cam_center[1] < max_y \
and contract_cam_center[2] > min_z and contract_cam_center[2] < max_z :
camera_mask[idx, block_id] = True
continue
if (not disable_inblock) and contract_cam_center[0] > org_min_x and contract_cam_center[0] < org_max_x \
and contract_cam_center[1] > org_min_y and contract_cam_center[1] < org_max_y \
and contract_cam_center[2] > org_min_z and contract_cam_center[2] < org_max_z :
camera_mask[idx, block_id] = True
continue
render_pkg_block = render(viewpoint_cam, gaussians, pp, background)
org_image_block = render_pkg_block["render"]
render_pkg_block = render(viewpoint_cam, masked_gaussians, pp, background)
image_block = render_pkg_block["render"]
loss = 1.0 - ssim(image_block, org_image_block)
if loss > args.ssim_threshold:
camera_mask[idx, block_id] = True
if not quiet:
for block_id in range(block_num):
print(f"Block {block_id} / {block_num} has {camera_mask[:, block_id].sum()} cameras.")
return camera_mask
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--config', type=str, help='train config file path')
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true')
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--disable_inblock", action="store_true")
parser.add_argument("--simple_selection", type=float, default=0)
args = parser.parse_args(sys.argv[1:])
with open(args.config) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
lp, op, pp = parse_cfg(cfg, args)
# Initialize system state (RNG)
safe_state(args.quiet)
config_name = os.path.splitext(os.path.basename(lp.config))[0]
if not lp.model_path:
# time_stamp = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
lp.model_path = os.path.join("./output/", config_name)
print("Output folder: {}".format(lp.model_path))
os.makedirs(lp.model_path, exist_ok = True)
with open(os.path.join(lp.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(lp))))
modules = __import__('scene')
model_config = lp.model_config
gaussians = getattr(modules, model_config['name'])(lp.sh_degree, **model_config['kwargs'])
scene = LargeScene(lp, gaussians, shuffle=False)
if not os.path.exists(os.path.join(lp.source_path, "data_partitions")):
os.makedirs(os.path.join(lp.source_path, "data_partitions"))
camera_mask = block_partitioning(scene.getTrainCameras(), gaussians, lp, pp, 1.0, args.quiet, args.disable_inblock, args.simple_selection)
camera_mask = camera_mask.cpu().numpy()
np.save(os.path.join(lp.source_path, "data_partitions", f"{config_name}.npy"), camera_mask)
# All done
print("\Partition complete.")