-
Notifications
You must be signed in to change notification settings - Fork 71
/
yolo_landmark.py
131 lines (109 loc) · 4.53 KB
/
yolo_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from ctypes import *
import math
import random
import os
import cv2
import numpy as np
import time
import darknet_landmark as darknet
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def cvDrawBoxes(detections, img ,ratio_w , ratio_h ):
print(len(detections))
for detection in detections:
# print(detection)
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
b = np.array(detection[3]) / np.array([ratio_w,ratio_h,ratio_w,ratio_h,ratio_w,ratio_h,
ratio_w,ratio_h,ratio_w,ratio_h])
b = b.astype(np.int)
xmin, ymin, xmax, ymax = convertBack(
float(x) / ratio_w , float(y) / ratio_h , float(w) / ratio_w, float(h) / ratio_h)
cv2.circle(img, (b[0], b[1]), 1, (0, 0, 255), 4)
cv2.circle(img, (b[2], b[3]), 1, (0, 255, 255), 4)
cv2.circle(img, (b[4], b[5]), 1, (255, 0, 255), 4)
cv2.circle(img, (b[6], b[7]), 1, (0, 255, 0), 4)
cv2.circle(img, (b[8], b[9]), 1, (255, 0, 0), 4)
pt1 = (xmin , ymin )
pt2 = (xmax, ymax)
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1)
cv2.putText(img,
# detection[0].decode() +
# " [" + str(round(detection[1] * 100, 2)) + "]",
str(round(detection[1] * 100, 2)) ,
(pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
[0, 255, 0], 2)
return img
netMain = None
metaMain = None
altNames = None
def YOLO():
global metaMain, netMain, altNames
configPath = "./cfg/mbv2_yolov3_face.cfg"
# configPath = "./cfg/lite_yolov3_face.cfg"
weightPath = "./backup/mbv2_yolov3_face_last.weights"
metaPath = "./data/face.data"
if not os.path.exists(configPath):
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
# Create an image we reuse for each detect
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
import glob
imgs = glob.glob("./test_imgs/input/*.*p*g")
for img_path in imgs:
print(img_path)
# img_path = "data/face3.jpeg"
img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h,w,_ = img.shape
ratio_w = darknet.network_width(netMain) * 1.0 / w
ratio_h = darknet.network_height(netMain) * 1.0 / h
img_resized = cv2.resize(img_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,img_resized.tobytes())
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.15 ,nms= 0.35)
# print(detections)
image = cvDrawBoxes(detections, img , ratio_w, ratio_h)
cv2.imwrite(img_path.replace("input","output"),image)
if __name__ == "__main__":
YOLO()