-
Notifications
You must be signed in to change notification settings - Fork 10
/
init.py
148 lines (117 loc) · 5.46 KB
/
init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import argparse
from train import *
from test import *
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m',
type=str,
default='./datasets/CamVid/ckpt-camvid-enet.pth',
help='The path to the pretrained enet model')
parser.add_argument('-i', '--image-path',
type=str,
help='The path to the image to perform semantic segmentation')
parser.add_argument('-rh', '--resize-height',
type=int,
default=1024,
help='The height for the resized image')
parser.add_argument('-rw', '--resize-width',
type=int,
default=512,
help='The width for the resized image')
parser.add_argument('-lr', '--learning-rate',
type=float,
default=5e-3,
help='The learning rate')
parser.add_argument('-bs', '--batch-size',
type=int,
default=10,
help='The batch size')
parser.add_argument('-wd', '--weight-decay',
type=float,
default=2e-4,
help='The weight decay')
parser.add_argument('-c', '--constant',
type=float,
default=1.02,
help='The constant used for calculating the class weights')
parser.add_argument('-e', '--epochs',
type=int,
default=102,
help='The number of epochs')
parser.add_argument('-nc', '--num-classes',
type=int,
default=12,
help='The number of classes')
parser.add_argument('-se', '--save-every',
type=int,
default=10,
help='The number of epochs after which to save a model')
parser.add_argument('-iptr', '--input-path-train',
type=str,
default='./datasets/CamVid/train/',
help='The path to the input dataset')
parser.add_argument('-lptr', '--label-path-train',
type=str,
default='./datasets/CamVid/trainannot/',
help='The path to the label dataset')
parser.add_argument('-ipv', '--input-path-val',
type=str,
default='./datasets/CamVid/val/',
help='The path to the input dataset')
parser.add_argument('-lpv', '--label-path-val',
type=str,
default='./datasets/CamVid/valannot/',
help='The path to the label dataset')
parser.add_argument('-iptt', '--input-path-test',
type=str,
default='./datasets/CamVid/test/',
help='The path to the input dataset')
parser.add_argument('-lptt', '--label-path-test',
type=str,
default='./datasets/CamVid/testannot/',
help='The path to the label dataset')
parser.add_argument('-pe', '--print-every',
type=int,
default=1,
help='The number of epochs after which to print the training loss')
parser.add_argument('-ee', '--eval-every',
type=int,
default=10,
help='The number of epochs after which to print the validation loss')
parser.add_argument('--cuda',
type=bool,
default=False,
help='Whether to use cuda or not')
parser.add_argument('--mode',
choices=['train', 'test'],
default='train',
help='Whether to train or test')
parser.add_argument('--test_mode',
choices=['cityscapes', 'camvid'],
default='cityscapes',
help='Whether to test cityscape model or camvid model')
parser.add_argument('--train_mode',
choices=['encoder-decoder', 'encoder'],
default='encoder-decoder',
help='Select to train mode of Enet')
parser.add_argument('--pretrain_model',
type=str,
default='',
help='Import previous train model of encoder ENet')
parser.add_argument('--cityscapes_path',
type=str,
default='',
help='Cityscapes Path to the directory of Cityscapes image')
parser.add_argument('--resume_model_path',
type=str,
default='',
help='Model path to resume training')
FLAGS, unparsed = parser.parse_known_args()
FLAGS.cuda = torch.device('cuda:0' if torch.cuda.is_available() and FLAGS.cuda else 'cpu')
if FLAGS.mode.lower() == 'train':
train(FLAGS)
elif FLAGS.mode.lower() == 'test':
test(FLAGS)
else:
raise RuntimeError('Unknown mode passed. \n Mode passed should be either of "train" or "test"')