-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrainAdj.py
executable file
·1238 lines (1104 loc) · 53 KB
/
retrainAdj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
## Import libraries
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import os.path
import random
import re
import sys
import tarfile
import csv
import collections
import numpy as np
import pandas as pd
from six.moves import urllib
import tensorflow as tf
from tensorflow.contrib.quantize.python import quant_ops
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
FLAGS = None
# These are all parameters that are tied to the particular model architecture
# we're using for Inception v3. These include things like tensor names and their
# sizes. If you want to adapt this script to work with another model, you will
# need to update these to reflect the values in the network you're using.
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
# Load data from csv database with all buildings
input_file = "./input/BuildingPointsValidImages.csv"
building_points = pd.read_csv(input_file)
def create_image_lists(image_dir, building_class, fov , iteration):
"""Builds a list of training, validation and testing images from the file system.
Analyzes the sub folders in the image directory, splits them into stable
training, testing, and validation sets, and returns a data structure
describing the lists of images for each label and their paths.
Args:
image_dir: String path to a folder containing subfolders of images.
building_class: String name of building class (one of 10 building classes:
'Residentia', 'Meeting', 'Healthcare', 'Industry', 'Office',
'Accommodat', 'Education', 'Sport', 'Shop', 'Other')
fov: String name of field of view (one of four fovs: 'F30', 'F60', 'F90', 'F30_60_90')
iteration: Numeric value between 0 and 3 (inclusive)
Returns:
A dictionary containing an entry for each label subfolder, with images split
into training, testing, and validation sets within each label.
"""
# Check if correct parameters are given
if not gfile.Exists(image_dir):
tf.logging.error("Image directory '" + image_dir + "' not found.")
if type(building_class) != type('str'):
tf.logging.error('Building_class variable (' + str(building_class) + ') does not have string data type.')
if len(fov) != 3 and len(fov) != 9:
tf.logging.error('Fov variable (' + str(fov) + ') should have length of 3 or 9).')
if type(iteration) != type(0):
tf.logging.error('Iteration variable (' + str(iteration) + ') does not have integer data type.')
if iteration < 0 or iteration > 3:
tf.logging.error('Iteration variable (' + str(iteration) + ') does not have number between 0 and 3 (inclusive).')
# Load valid data of specific building class
valid_rows = (building_points['valid'] == 'Yes')
valid_columns = ['ID', 'BuildingID', 'BU_CODE', 'pano_id', building_class]
images_valid = building_points.loc[valid_rows,valid_columns]
# Count amount of buildings per neighbourhood
total_buildings_neighbourhood = images_valid.groupby('BU_CODE')['BU_CODE'].count()
class_buildings_neighbourhood = images_valid.groupby('BU_CODE')[building_class].sum()
non_class_buildings_neighbourhood = total_buildings_neighbourhood - class_buildings_neighbourhood
# Get unique neighbourhood codes from valid images
neighbourhood_codes = images_valid['BU_CODE'].unique()
# Create five fold list of neighbourhood codes
kfold00_20_list = []
kfold20_40_list = []
kfold40_60_list = []
kfold60_80_list = []
kfold80_100_list = []
# Create five fold list that counts amount of buildings
# Counting building is done for type of class, non-class and total
kfold00_20_count = [0, 0, 0] # count buildings[class, non-class, total]
kfold20_40_count = [0, 0, 0] # count buildings[class, non-class, total]
kfold40_60_count = [0, 0, 0] # count buildings[class, non-class, total]
kfold60_80_count = [0, 0, 0] # count buildings[class, non-class, total]
kfold80_100_count = [0, 0, 0] # count buildings[class, non-class, total]
# Create five subsets that have equal distribution with different neighbourhoods
for idx, neighbourhood_code in enumerate(neighbourhood_codes):
# Instantiate five fold subsets with five neighbourhoods each
if len(kfold00_20_list) < 5:
kfold00_20_list.append(neighbourhood_code)
kfold00_20_count[0] = kfold00_20_count[0] + class_buildings_neighbourhood[idx]
kfold00_20_count[1] = kfold00_20_count[1] + non_class_buildings_neighbourhood[idx]
kfold00_20_count[2] = kfold00_20_count[2] + total_buildings_neighbourhood[idx]
elif len(kfold20_40_list) < 5:
kfold20_40_list.append(neighbourhood_code)
kfold20_40_count[0] = kfold20_40_count[0] + class_buildings_neighbourhood[idx]
kfold20_40_count[1] = kfold20_40_count[1] + non_class_buildings_neighbourhood[idx]
kfold20_40_count[2] = kfold20_40_count[2] + total_buildings_neighbourhood[idx]
elif len(kfold40_60_list) < 5:
kfold40_60_list.append(neighbourhood_code)
kfold40_60_count[0] = kfold40_60_count[0] + class_buildings_neighbourhood[idx]
kfold40_60_count[1] = kfold40_60_count[1] + non_class_buildings_neighbourhood[idx]
kfold40_60_count[2] = kfold40_60_count[2] + total_buildings_neighbourhood[idx]
elif len(kfold60_80_list) < 5:
kfold60_80_list.append(neighbourhood_code)
kfold60_80_count[0] = kfold60_80_count[0] + class_buildings_neighbourhood[idx]
kfold60_80_count[1] = kfold60_80_count[1] + non_class_buildings_neighbourhood[idx]
kfold60_80_count[2] = kfold60_80_count[2] + total_buildings_neighbourhood[idx]
elif len(kfold80_100_list) < 5:
kfold80_100_list.append(neighbourhood_code)
kfold80_100_count[0] = kfold80_100_count[0] + class_buildings_neighbourhood[idx]
kfold80_100_count[1] = kfold80_100_count[1] + non_class_buildings_neighbourhood[idx]
kfold80_100_count[2] = kfold80_100_count[2] + total_buildings_neighbourhood[idx]
building_total = kfold00_20_count[2] + kfold20_40_count[2] + kfold40_60_count[2] \
+ kfold60_80_count[2] + kfold80_100_count[2]
# After instantation fill each of folds to have same number of buildings
if idx >= 25:
# Fill five folds to each have 20% of buildings
if ((float(kfold00_20_count[2]) / float(building_total)) * 100.0) < 20.0:
kfold00_20_list.append(neighbourhood_code)
kfold00_20_count[0] = kfold00_20_count[0] + class_buildings_neighbourhood[idx]
kfold00_20_count[1] = kfold00_20_count[1] + non_class_buildings_neighbourhood[idx]
kfold00_20_count[2] = kfold00_20_count[2] + total_buildings_neighbourhood[idx]
elif ((float(kfold20_40_count[2]) / float(building_total)) * 100.0) < 20.0:
kfold20_40_list.append(neighbourhood_code)
kfold20_40_count[0] = kfold20_40_count[0] + class_buildings_neighbourhood[idx]
kfold20_40_count[1] = kfold20_40_count[1] + non_class_buildings_neighbourhood[idx]
kfold20_40_count[2] = kfold20_40_count[2] + total_buildings_neighbourhood[idx]
elif ((float(kfold40_60_count[2]) / float(building_total)) * 100.0) < 20.0:
kfold40_60_list.append(neighbourhood_code)
kfold40_60_count[0] = kfold40_60_count[0] + class_buildings_neighbourhood[idx]
kfold40_60_count[1] = kfold40_60_count[1] + non_class_buildings_neighbourhood[idx]
kfold40_60_count[2] = kfold40_60_count[2] + total_buildings_neighbourhood[idx]
elif ((float(kfold60_80_count[2]) / float(building_total)) * 100.0) < 20.0:
kfold60_80_list.append(neighbourhood_code)
kfold60_80_count[0] = kfold60_80_count[0] + class_buildings_neighbourhood[idx]
kfold60_80_count[1] = kfold60_80_count[1] + non_class_buildings_neighbourhood[idx]
kfold60_80_count[2] = kfold60_80_count[2] + total_buildings_neighbourhood[idx]
elif ((float(kfold80_100_count[2]) / float(building_total)) * 100.0) < 20.0:
kfold80_100_list.append(neighbourhood_code)
kfold80_100_count[0] = kfold80_100_count[0] + class_buildings_neighbourhood[idx]
kfold80_100_count[1] = kfold80_100_count[1] + non_class_buildings_neighbourhood[idx]
kfold80_100_count[2] = kfold80_100_count[2] + total_buildings_neighbourhood[idx]
# Creating training, validation and testing sets per class
if iteration == 0:
training_neigh = kfold00_20_list + kfold20_40_list + kfold40_60_list
validation_neigh = kfold60_80_list
testing_neigh = kfold80_100_list
if iteration == 1:
training_neigh = kfold20_40_list + kfold40_60_list + kfold60_80_list
validation_neigh = kfold00_20_list
testing_neigh = kfold80_100_list
if iteration == 2:
training_neigh = kfold40_60_list + kfold60_80_list + kfold00_20_list
validation_neigh = kfold20_40_list
testing_neigh = kfold80_100_list
if iteration == 3:
training_neigh = kfold60_80_list + kfold00_20_list + kfold20_40_list
validation_neigh = kfold40_60_list
testing_neigh = kfold80_100_list
# Create empty lists for training, validation and testing image filepaths
# One list for class and one for non-class
class_training_images = []
non_class_training_images = []
class_validation_images = []
non_class_validation_images = []
class_testing_images = []
non_class_testing_images = []
# Make list of filepaths of training images for class and non-class
for neigh in training_neigh:
# Load valid data of specific building class
rows_neigh = (images_valid['BU_CODE'] == neigh)
images_neigh = images_valid.loc[rows_neigh,]
image_dir_neigh = image_dir + '/' + neigh[-4:]
for idx, image in images_neigh.iterrows():
if len(fov) == 3:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov + "_A00.jpg"
filepaths = [image_dir_neigh + "/" + filename]
if len(fov) == 9:
filepaths = []
for fov2 in ['F30','F60','F90']:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov2 + "_A00.jpg"
filepath = image_dir_neigh + "/" + filename
filepaths += [filepath]
if image[building_class] == 1:
class_training_images += filepaths
if image[building_class] == 0:
non_class_training_images += filepaths
# Make list of filepaths of validation images for class and non-class
for neigh in validation_neigh:
# Load valid data of specific building class
rows_neigh = (images_valid['BU_CODE'] == neigh)
images_neigh = images_valid.loc[rows_neigh,]
image_dir_neigh = image_dir + '/' + neigh[-4:]
for idx, image in images_neigh.iterrows():
if len(fov) == 3:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov + "_A00.jpg"
filepaths = [image_dir_neigh + "/" + filename]
if len(fov) == 9:
filepaths = []
for fov2 in ['F30', 'F60', 'F90']:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov2 + "_A00.jpg"
filepath = image_dir_neigh + "/" + filename
filepaths += [filepath]
if image[building_class] == 1:
class_validation_images += filepaths
if image[building_class] == 0:
non_class_validation_images += filepaths
# Make list of filepaths of testing images for class and non-class
for neigh in testing_neigh:
# Load valid data of specific building class
rows_neigh = (images_valid['BU_CODE'] == neigh)
images_neigh = images_valid.loc[rows_neigh,]
image_dir_neigh = image_dir + '/' + neigh[-4:]
for idx, image in images_neigh.iterrows():
if len(fov) == 3:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov + "_A00.jpg"
filepaths = [image_dir_neigh + "/" + filename]
if len(fov) == 9:
filepaths = []
for fov2 in ['F30', 'F60', 'F90']:
filename = "N" + image['BU_CODE'] + "_B" + str(image['BuildingID']) + "_P" \
+ image['pano_id'] + "_" + fov2 + "_A00.jpg"
filepath = image_dir_neigh + "/" + filename
filepaths += [filepath]
if image[building_class] == 1:
class_testing_images += filepaths
if image[building_class] == 0:
non_class_testing_images += filepaths
class_label_name = re.sub(r'[^a-z0-9]+', ' ', building_class.lower())
non_class_label_name = "non_" + class_label_name
result = collections.OrderedDict()
result[class_label_name] = {
'dir': class_label_name,
'training': class_training_images,
'testing': class_testing_images,
'validation': class_validation_images
}
result[non_class_label_name] = {
'dir': non_class_label_name,
'training': non_class_training_images,
'testing': non_class_testing_images,
'validation': non_class_validation_images
}
return result
def get_image_path(image_lists, label_name, index, image_dir, category):
""""Returns a path to an image for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Int offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of set to pull images from - training, testing, or
validation.
Returns:
File system path string to an image that meets the requested parameters.
"""
if label_name not in image_lists:
tf.logging.fatal('Label does not exist' + label_name)
label_lists = image_lists[label_name]
if category not in label_lists:
tf.logging.fatal('Category does not exist' + category)
category_list = label_lists[category]
if not category_list:
tf.logging.fatal('Label %s has no images in the category %s.',
label_name, category)
mod_index = index % len(category_list)
full_path = category_list[mod_index]
return full_path
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
category, architecture):
""""Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
architecture: The name of the model architecture.
Returns:
File system path string to an image that meets the requested parameters.
"""
return get_image_path(image_lists, label_name, index, bottleneck_dir,
category) + '_' + architecture + '.txt'
def create_model_graph(model_info):
""""Creates a graph from saved GraphDef file and returns a Graph object.
Args:
model_info: Dictionary containing information about the model architecture.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Graph().as_default() as graph:
model_path = os.path.join(FLAGS.model_dir, model_info['model_file_name'])
with gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(
graph_def,
name='',
return_elements=[
model_info['bottleneck_tensor_name'],
model_info['resized_input_tensor_name'],
]))
return graph, bottleneck_tensor, resized_input_tensor
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Runs inference on an image to extract the 'bottleneck' summary layer.
Args:
sess: Current active TensorFlow Session.
image_data: String of raw JPEG data.
image_data_tensor: Input data layer in the graph.
decoded_image_tensor: Output of initial image resizing and preprocessing.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: Layer before the final softmax.
Returns:
Numpy array of bottleneck values.
"""
# First decode the JPEG image, resize it, and rescale the pixel values.
resized_input_values = sess.run(decoded_image_tensor,
{image_data_tensor: image_data})
# Then run it through the recognition network.
bottleneck_values = sess.run(bottleneck_tensor,
{resized_input_tensor: resized_input_values})
bottleneck_values = np.squeeze(bottleneck_values)
return bottleneck_values
def maybe_download_and_extract(data_url):
"""Download and extract model tar file.
If the pretrained model we're using doesn't already exist, this function
downloads it from the TensorFlow.org website and unpacks it into a directory.
Args:
data_url: Web location of the tar file containing the pretrained model.
"""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = data_url.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)
statinfo = os.stat(filepath)
tf.logging.info('Successfully downloaded', filename, statinfo.st_size,
'bytes.')
print('Extracting file from ', filepath)
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
else:
print('Not extracting or downloading files, model already present in disk')
def ensure_dir_exists(dir_name):
"""Makes sure the folder exists on disk.
Args:
dir_name: Path string to the folder we want to create.
"""
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Create a single bottleneck file."""
tf.logging.info('Creating bottleneck at ' + bottleneck_path)
image_path = get_image_path(image_lists, label_name, index,
image_dir, category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist ' + image_path)
image_data = gfile.FastGFile(image_path, 'rb').read()
try:
bottleneck_values = run_bottleneck_on_image(
sess, image_data, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor)
except Exception as e:
raise RuntimeError('Error during processing file %s (%s)' % (image_path,
str(e)))
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
category, bottleneck_dir, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor, architecture):
"""Retrieves or calculates bottleneck values for an image.
If a cached version of the bottleneck data exists on-disk, return that,
otherwise calculate the data and save it to disk for future use.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be modulo-ed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of which set to pull images from - training, testing,
or validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The output tensor for the bottleneck values.
architecture: The name of the model architecture.
Returns:
Numpy array of values produced by the bottleneck layer for the image.
"""
#label_lists = image_lists[label_name]
#sub_dir = label_lists['dir']
#sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
#ensure_dir_exists(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
bottleneck_dir, category, architecture)
if not os.path.exists(bottleneck_path):
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
did_hit_error = False
try:
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
except ValueError:
tf.logging.warning('Invalid float found, recreating bottleneck')
did_hit_error = True
if did_hit_error:
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
# Allow exceptions to propagate here, since they shouldn't happen after a
# fresh creation
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
return bottleneck_values
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture):
"""Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no
distortions applied during training) it can speed things up a lot if we
calculate the bottleneck layer values once for each image during
preprocessing, and then just read those cached values repeatedly during
training. Here we go through all the images we've found, calculate those
values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
image_dir: Root folder string of the subfolders containing the training
images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The penultimate output layer of the graph.
architecture: The name of the model architecture.
Returns:
Nothing.
"""
how_many_bottlenecks = 0
ensure_dir_exists(bottleneck_dir)
for label_name, label_lists in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for index, unused_base_name in enumerate(category_list):
get_or_create_bottleneck(
sess, image_lists, label_name, index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
how_many_bottlenecks += 1
if how_many_bottlenecks % 100 == 0:
tf.logging.info(
str(how_many_bottlenecks) + ' bottleneck files created.')
def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
bottleneck_dir, image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor, architecture):
"""Retrieves bottleneck values for cached images.
If no distortions are being applied, this function can retrieve the cached
bottleneck values directly from disk for images. It picks a random set of
images from the specified category.
Args:
sess: Current TensorFlow Session.
image_lists: Dictionary of training images for each label.
how_many: If positive, a random sample of this size will be chosen.
If negative, all bottlenecks will be retrieved.
category: Name string of which set to pull from - training, testing, or
validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
image_dir: Root folder string of the subfolders containing the training
images.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
architecture: The name of the model architecture.
Returns:
List of bottleneck arrays, their corresponding ground truths, and the
relevant filenames.
"""
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
filenames = []
if how_many >= 0:
# Retrieve a random sample of bottlenecks.
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
bottlenecks.append(bottleneck)
ground_truths.append(label_index)
filenames.append(image_name)
else:
# Retrieve all bottlenecks.
for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(image_lists[label_name][category]):
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
bottlenecks.append(bottleneck)
ground_truths.append(label_index)
filenames.append(image_name)
return bottlenecks, ground_truths, filenames
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor,
bottleneck_tensor_size):
"""Adds a new softmax and fully-connected layer for training.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to
recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
bottleneck_tensor_size: How many entries in the bottleneck vector.
Returns:
The tensors for the training and cross entropy results, and tensors for the
bottleneck input and ground truth input.
"""
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor,
shape=[None, bottleneck_tensor_size],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(
tf.int64, [None], name='GroundTruthInput')
# Organizing the following ops as `final_training_ops` so they're easier
# to see in TensorBoard
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
initial_value = tf.truncated_normal(
[bottleneck_tensor_size, class_count], stddev=0.001)
layer_weights = tf.Variable(initial_value, name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
tf.summary.histogram('activations', final_tensor)
with tf.name_scope('cross_entropy'):
cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
labels=ground_truth_input, logits=logits)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
train_step = optimizer.minimize(cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
def add_evaluation_step(result_tensor, ground_truth_tensor):
"""Inserts the operations we need to evaluate the accuracy of our results.
Args:
result_tensor: The new final node that produces results.
ground_truth_tensor: The node we feed ground truth data
into.
Returns:
Tuple of (evaluation step, prediction).
"""
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
prediction = tf.argmax(result_tensor, 1)
correct_prediction = tf.equal(prediction, ground_truth_tensor)
with tf.name_scope('accuracy'):
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', evaluation_step)
return evaluation_step, prediction
def save_graph_to_file(sess, graph, graph_file_name):
output_graph_def = graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
with gfile.FastGFile(graph_file_name, 'wb') as f:
f.write(output_graph_def.SerializeToString())
return
def prepare_file_system():
# Setup the directory we'll write summaries to for TensorBoard
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
if FLAGS.intermediate_store_frequency > 0:
ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)
return
def create_model_info(architecture):
"""Given the name of a model architecture, returns information about it.
There are different base image recognition pretrained models that can be
retrained using transfer learning, and this function translates from the name
of a model to the attributes that are needed to download and train with it.
Args:
architecture: Name of a model architecture.
Returns:
Dictionary of information about the model, or None if the name isn't
recognized
Raises:
ValueError: If architecture name is unknown.
"""
architecture = architecture.lower()
is_quantized = False
if architecture == 'inception_v3':
# pylint: disable=line-too-long
data_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
bottleneck_tensor_name = 'pool_3/_reshape:0'
bottleneck_tensor_size = 2048
input_width = 299
input_height = 299
input_depth = 3
resized_input_tensor_name = 'Mul:0'
model_file_name = 'classify_image_graph_def.pb'
input_mean = 128
input_std = 128
elif architecture.startswith('mobilenet_'):
parts = architecture.split('_')
if len(parts) != 3 and len(parts) != 4:
tf.logging.error("Couldn't understand architecture name '%s'",
architecture)
return None
version_string = parts[1]
if (version_string != '1.0' and version_string != '0.75' and
version_string != '0.50' and version_string != '0.25'):
tf.logging.error(
""""The Mobilenet version should be '1.0', '0.75', '0.50', or '0.25',
but found '%s' for architecture '%s'""",
version_string, architecture)
return None
size_string = parts[2]
if (size_string != '224' and size_string != '192' and
size_string != '160' and size_string != '128'):
tf.logging.error(
"""The Mobilenet input size should be '224', '192', '160', or '128',
but found '%s' for architecture '%s'""",
size_string, architecture)
return None
if len(parts) == 3:
is_quantized = False
else:
if parts[3] != 'quantized':
tf.logging.error(
"Couldn't understand architecture suffix '%s' for '%s'", parts[3],
architecture)
return None
is_quantized = True
if is_quantized:
data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
data_url += version_string + '_' + size_string + '_quantized_frozen.tgz'
bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
resized_input_tensor_name = 'Placeholder:0'
model_dir_name = ('mobilenet_v1_' + version_string + '_' + size_string +
'_quantized_frozen')
model_base_name = 'quantized_frozen_graph.pb'
else:
data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
data_url += version_string + '_' + size_string + '_frozen.tgz'
bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
resized_input_tensor_name = 'input:0'
model_dir_name = 'mobilenet_v1_' + version_string + '_' + size_string
model_base_name = 'frozen_graph.pb'
bottleneck_tensor_size = 1001
input_width = int(size_string)
input_height = int(size_string)
input_depth = 3
model_file_name = os.path.join(model_dir_name, model_base_name)
input_mean = 127.5
input_std = 127.5
else:
tf.logging.error("Couldn't understand architecture name '%s'", architecture)
raise ValueError('Unknown architecture', architecture)
return {
'data_url': data_url,
'bottleneck_tensor_name': bottleneck_tensor_name,
'bottleneck_tensor_size': bottleneck_tensor_size,
'input_width': input_width,
'input_height': input_height,
'input_depth': input_depth,
'resized_input_tensor_name': resized_input_tensor_name,
'model_file_name': model_file_name,
'input_mean': input_mean,
'input_std': input_std,
'quantize_layer': is_quantized,
}
def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,
input_std):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
input_width: Desired width of the image fed into the recognizer graph.
input_height: Desired width of the image fed into the recognizer graph.
input_depth: Desired channels of the image fed into the recognizer graph.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
offset_image = tf.subtract(resized_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
return jpeg_data, mul_image
def days_hours_minutes_seconds(td):
return td.days, td.seconds//3600, (td.seconds//60)%60, td.seconds%60
def main(_):
# Needed to make sure the logging output is visible.
# See https://github.com/tensorflow/tensorflow/issues/3047
tf.logging.set_verbosity(tf.logging.INFO)
# Prepare necessary directories that can be used during training
prepare_file_system()
# Gather information about the model architecture we'll be using.
model_info = create_model_info(FLAGS.architecture)
if not model_info:
tf.logging.error('Did not recognize architecture flag')
return -1
# Set up the pre-trained graph.
maybe_download_and_extract(model_info['data_url'])
start_time = datetime.now() # Save starting time after downloading model
graph, bottleneck_tensor, resized_image_tensor = (
create_model_graph(model_info))
# Give image directory
image_dir = FLAGS.image_dir
# Create image lists and check if there are enough classes
image_lists = create_image_lists(image_dir = image_dir,
building_class = building_class, fov = fov, iteration=iteration)
class_count = len(image_lists.keys())
if class_count == 0:
tf.logging.error('Creating image list unsuccessful -'
' no valid classes were made')
return -1
if class_count == 1:
tf.logging.error('Creating image list unsuccessful'
'- multiple classes are needed for classification')
return -1
#Set up naming scheme for output .csv files
f_class = building_class + '_'
f_fov = fov + '_'
f_model = str(FLAGS.architecture) + '_'
f_iteration = str(iteration)
f_name = f_class + f_fov + f_model + f_iteration + '.csv'
with tf.Session(graph=graph) as sess:
# Set up the image decoding sub-graph.
jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(
model_info['input_width'], model_info['input_height'],
model_info['input_depth'], model_info['input_mean'],
model_info['input_std'])
# We'll make sure we've calculated the 'bottleneck' image summaries and
# cached them on disk.
cache_bottlenecks(sess, image_lists, image_dir,
FLAGS.bottleneck_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor,
bottleneck_tensor, FLAGS.architecture)
# Add the new layer that we'll be training.
(train_step, cross_entropy, bottleneck_input, ground_truth_input,
final_tensor) = add_final_training_ops(
len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor,
model_info['bottleneck_tensor_size'], model_info['quantize_layer'])
# Create the operations we need to evaluate the accuracy of our new layer.
evaluation_step, prediction = add_evaluation_step(
final_tensor, ground_truth_input)
# Merge all the summaries and write them out to the summaries_dir
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
sess.graph)
validation_writer = tf.summary.FileWriter(
FLAGS.summaries_dir + '/validation')
# Set up all our weights to their initial default values.
init = tf.global_variables_initializer()
sess.run(init)
# Run the training for as many cycles as requested on the command line.
for i in range(FLAGS.how_many_training_steps):
# Get a batch of input bottleneck values from the cache stored on disk.
(train_bottlenecks,train_ground_truth, _) = get_random_cached_bottlenecks(
sess, image_lists, FLAGS.train_batch_size, 'training',
FLAGS.bottleneck_dir, image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
FLAGS.architecture)
# Feed the bottlenecks and ground truth into the graph, and run a training
# step. Capture training summaries for TensorBoard with the `merged` op.
train_summary, _ = sess.run(
[merged, train_step],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
train_writer.add_summary(train_summary, i)
# Every so often, print out how well the graph is training.
is_last_step = (i + 1 == FLAGS.how_many_training_steps)
if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
train_accuracy, cross_entropy_value = sess.run(
[evaluation_step, cross_entropy],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i, train_accuracy * 100))
tf.logging.info('%s: Step %d: Cross entropy = %f' % (datetime.now(), i, cross_entropy_value))
validation_bottlenecks, validation_ground_truth, _ = (
get_random_cached_bottlenecks(
sess, image_lists, FLAGS.validation_batch_size, 'validation',
FLAGS.bottleneck_dir, image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
FLAGS.architecture))
# Run a validation step and capture training summaries for TensorBoard
# with the `merged` op.
validation_summary, validation_accuracy = sess.run(
[merged, evaluation_step],
feed_dict={bottleneck_input: validation_bottlenecks,
ground_truth_input: validation_ground_truth})
validation_writer.add_summary(validation_summary, i)
tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %(datetime.now(), i, validation_accuracy * 100, len(validation_bottlenecks)))
# Store intermediate results
intermediate_frequency = FLAGS.intermediate_store_frequency
if (intermediate_frequency > 0 and (i % intermediate_frequency == 0)
and i > 0):
intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +
'intermediate_' + str(i) + '.pb')
tf.logging.info('Save intermediate result to : ' +
intermediate_file_name)
save_graph_to_file(sess, graph, intermediate_file_name)
# We've completed all our training, so run a final test evaluation on
# some new images we haven't used before.
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(
sess, image_lists, FLAGS.test_batch_size, 'testing',
FLAGS.bottleneck_dir, image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
FLAGS.architecture))
test_accuracy, predictions = sess.run([evaluation_step, prediction],
feed_dict={bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth})