-
Notifications
You must be signed in to change notification settings - Fork 13
/
1sourceTracking_SELDnet.py
197 lines (157 loc) · 7.81 KB
/
1sourceTracking_SELDnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
Python script to train SELDnet model and analyze its performance.
Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen, "Sound event localization and detection
of overlapping sources using convolutional recurrent neural network" in IEEE Journal of Selected Topics in Signal
Processing (JSTSP 2018) https://arxiv.org/pdf/1807.00129.pdf
File name: 1sourceTracking_SELDnet.py
Author: David Diaz-Guerra
Date creation: 05/2020
Python Version: 3.8
Pytorch Version: 1.4.0
"""
import sys
import numpy as np
import torch
import matplotlib.pyplot as plt
import acousticTrackingDataset as at_dataset
import acousticTrackingLearners as at_learners
import acousticTrackingModels as at_models
from acousticTrackingDataset import Parameter
# %% Parameters
K = 512 # Window size
fs = 16000
N = 12
array_setup = at_dataset.benchmark2_array_setup
array_name = 'robot' # Only for the output filenames
array_locata_name = 'benchmark2' # Name of the array in the LOCATA dataset
model_name = 'SELDnet' # Only for filename, change it also in Network declaration cell
extra_notes = ''
suffix = model_name + '_' + array_name + '_K' + str(K)
if extra_notes is not None and extra_notes != '':
suffix += '_' + extra_notes
# %% Dataset
T = 20 # Trajectory length (s)
path_train = "datasets/LibriSpeech/train-clean-100"
path_test = "datasets/LibriSpeech/test-clean"
corpusDataset_train = at_dataset.LibriSpeechDataset(path_train, T, return_vad=True)
corpusDataset_test = at_dataset.LibriSpeechDataset(path_test, T, return_vad=True)
windowing = at_dataset.Windowing(K, K*3//4, window=np.hanning)
dataset_train = at_dataset.RandomTrajectoryDataset(
sourceDataset=corpusDataset_train,
room_sz = Parameter([3,3,2.5], [10,8,6]), # Random room sizes from 3x3x2.5 to 10x8x6 meters
T60 = Parameter(0.0, 0.3), # Random reverberation times from 0.0 to 0.3 seconds
# We could not train it with higher reverberations
abs_weights = Parameter([0.5]*6, [1.0]*6), # Random absorption weights ratios between walls
array_setup = array_setup,
array_pos = Parameter([0.1, 0.1, 0.1], [0.9, 0.9, 0.5]), # Ensure a minimum separation between the array and the walls
SNR = Parameter(100), # Start the simulation with a low level of omnidirectional noise
nb_points = 156, # Simulate 156 RIRs per trajectory (independent from the SRP-PHAT window length
transforms = [windowing]
)
dataset_test = at_dataset.RandomTrajectoryDataset( # The same setup than for training but with other source signals
sourceDataset=corpusDataset_test,
room_sz = Parameter([3,3,2.5], [10,8,6]),
T60 = Parameter(0.0, 0.3),
abs_weights = Parameter([0.5]*6, [1.0]*6),
array_setup = array_setup,
array_pos = Parameter([0.1, 0.1, 0.1], [0.9, 0.9, 0.5]),
SNR = Parameter(100),
nb_points = 156,
transforms = [windowing]
)
# %% Network declaration
net = at_models.SELDnet(N)
learner = at_learners.OneSourceTrackingSpectrogramLearner(net, N, K, apply_vad=True)
learner.cuda()
# %% Network training
trajectories_per_batch = 5
trajectories_per_gpu_call = 5
lr = 0.0001
nb_epoch = 80
print('Training network...')
for epoch_idx in range(nb_epoch):
print('\nEpoch {}/{}:'.format(epoch_idx+1, nb_epoch))
sys.stdout.flush()
learner.train_epoch(dataset_train, trajectories_per_batch, trajectories_per_gpu_call, lr=lr, epoch=epoch_idx)
loss_test, rmsae_test = learner.test_epoch(dataset_test, trajectories_per_gpu_call)
print('Test loss: {:.4f}, Test rmsae: {:.2f}deg'.format(loss_test, rmsae_test) )
sys.stdout.flush()
if epoch_idx == 29:
print('\nDecreasing SNR')
dataset_train.SNR = Parameter(5, 30) # Random SNR between 5dB and 30dB after the model has started to converge
dataset_test.SNR = Parameter(5, 30) # Random SNR between 5dB and 30dB after the model has started to converge
trajectories_per_batch = 10 # Increase the batch size
lr = lr/10 # Decrease the learning rate
print('\nTraining finished\n')
# %% Save model
print('Saving model...')
torch.save(net.state_dict(), 'models/' + '1sourceTracking_' + suffix + '_model.bin')
print('Model saved.\n')
sys.stdout.flush()
# %% Load model
net = at_models.SELDnet(N)
net.load_state_dict(torch.load('models/' + '1sourceTracking_' + suffix + '_model.bin'))
learner = at_learners.OneSourceTrackingSpectrogramLearner(net, N, K, apply_vad=True)
learner.cuda()
# %% Analyze results
print("Analyzing results for several reverberation times")
sys.stdout.flush()
T60 = np.array((0, 0.3, 0.6, 0.9, 1.2, 1.5)) # Reverberation times to analyze
SNR = np.array((5, 15, 30)) # SNRs to analyze
acoustic_scenes = np.empty((len(T60), len(SNR)), dtype=object) # To store the analyzed acoustic scenes
rmsae = np.zeros((len(T60), len(SNR))) # Root Mean Saqure Angular Error (degrees) of the model
rmsae_noSilences = np.zeros((len(T60), len(SNR))) # RMSAE of the model without include silent frames
trajectories_per_batch = 5
for i in range(len(T60)):
for j in range(len(SNR)):
print('Analyzing scenes with T60=' + str(T60[i]) + 's and SNR=' + str(SNR[j]) + 'dB')
sys.stdout.flush()
dataset_test.T60 = Parameter(T60[i])
dataset_test.SNR = Parameter(SNR[j])
acoustic_scenes[i,j], rmsae[i,j] = learner.predict_dataset(dataset_test, trajectories_per_batch, return_rmsae=True, save_x=True, x_filed_name='spectrograms')
# In order to get more accurate RMSAEs you can use dataset_train, which simulates a higher number of trajectories,
# but it takes more time and has a bigger memory consumption
for k in range(len(acoustic_scenes[i,j])):
rmsae_noSilences[i,j] += acoustic_scenes[i,j][k].get_rmsae(exclude_silences=True)/len(acoustic_scenes[i,j])
acoustic_scenes[i,j] = acoustic_scenes[i,j][:10] # Store only 10 scenes, they include the source signals
# and the spectrograms, so they weights quite a lot
# %% Save analyzed results
print("Saving results")
sys.stdout.flush()
np.save('results/' + '1sourceTracking_' + suffix + '_predictions_T60.npy', T60)
np.save('results/' + '1sourceTracking_' + suffix + '_predictions_SNR.npy', SNR)
np.save('results/' + '1sourceTracking_' + suffix + '_predictions_rmsae.npy', rmsae)
np.save('results/' + '1sourceTracking_' + suffix + '_predictions_rmsae_noSilences.npy', rmsae_noSilences)
np.save('results/' + '1sourceTracking_' + suffix + '_predictions_acoustic_scenes.npy', acoustic_scenes)
print("Results saved\n")
sys.stdout.flush()
# %% Load analyzed results
T60 = np.load('results/' + '1sourceTracking_' + suffix + '_predictions_T60.npy')
SNR = np.load('results/' + '1sourceTracking_' + suffix + '_predictions_SNR.npy')
rmsae = np.load('results/' + '1sourceTracking_' + suffix + '_predictions_rmsae.npy')
rmsae_noSilences = np.load('results/' + '1sourceTracking_' + suffix + '_predictions_rmsae_noSilences.npy')
acoustic_scenes = np.load('results/' + '1sourceTracking_' + suffix + '_predictions_acoustic_scenes.npy', allow_pickle=True)
# %% Plot analyzed results
legend = []
style = ['-', '--', '-.', ':']
for j in range(len(SNR)):
plt.plot(T60, np.stack((rmsae[:, -j-1]), axis=-1), style[j])
legend += ['SELDnet (SNR={})'.format(SNR[-j-1])]
plt.gca().set_prop_cycle(None)
plt.legend(legend)
plt.xlabel('T60 [s]')
plt.ylabel('rmsae [º]')
plt.title(suffix)
plt.show()
# %% Analyze LOCATA dataset
if array_locata_name != '' and array_locata_name is not None:
print("Analyzing LOCATA dataset")
path_locata = "datasets/LibriSpeech/dev/"
windowing = at_dataset.Windowing(K, K * 3 // 4, window=np.hanning)
dataset_locata = at_dataset.LocataDataset(path_locata, array_locata_name, fs, dev=True,
tasks=(1,3,5), transforms=[windowing])
acoustic_scenes_locata = learner.predict_dataset(dataset_locata, 1, save_x=True, x_filed_name='spectrograms')
rmsae = np.zeros(len(dataset_locata)) # RMSAE of the model for each LOCATA recording including silent frames
for i in range(len(dataset_locata)):
rmsae[i] = acoustic_scenes_locata[i].get_rmsae(exclude_silences=False)
print('SELDnet rmsae: ' + str(rmsae))