-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheg4_hierarchical_sampling_efficient.py
238 lines (200 loc) · 12.6 KB
/
eg4_hierarchical_sampling_efficient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from operator import itemgetter
import h5py
import numpy.linalg as la
from interpolate_fluctuation_modes import update_affine_decomposition, effective_S, effective_stress_localization, \
interpolate_fluctuation_modes, get_phi, transform_strain_localization
from microstructures import *
from optimize_alpha import opt4_alphas
from utilities import read_h5, construct_stress_localization, compute_err_indicator_efficient
np.random.seed(0)
# np.set_printoptions(precision=3)
for ms_id in [6, 7, 8, 9]:
file_name, data_path, temp1, temp2, n_tests, sampling_alphas = itemgetter('file_name', 'data_path', 'temp1', 'temp2',
'n_tests',
'sampling_alphas')(microstructures[ms_id])
print(file_name, '\t', data_path)
out_file = path(f'output/opt_{file_name.name}')
given_alpha_levels = True if sampling_alphas is not None else False
# debuging options
# given_alpha_levels = False
# n_tests = 10
n_hierarchical_levels = len(sampling_alphas) if sampling_alphas is not None else 5
test_temperatures = np.linspace(temp1, temp2, num=n_tests)
test_alphas = np.linspace(0, 1, num=n_tests)
# read reference solutions
mesh, refs = read_h5(file_name, data_path, test_temperatures)
mat_id = mesh['mat_id']
n_gauss = mesh['n_gauss']
strain_dof = mesh['strain_dof']
global_gradient = mesh['global_gradient']
n_gp = mesh['n_integration_points']
n_phases = len(np.unique(mat_id))
n_modes = refs[0]['strain_localization'].shape[-1]
# extract temperature dependent data from the reference solutions
# such as: material stiffness and thermal strain at each temperature and for all phases
ref_Cs = np.zeros((n_tests, *refs[0]['mat_stiffness'].shape)) # n_tests x n_phases x 6 x 6
ref_epss = np.zeros((n_tests, *refs[0]['mat_thermal_strain'].shape)) # n_tests x n_phases x 6 x 1
effSref = np.zeros((n_tests, strain_dof, n_modes))
normalization_factor_mech = np.zeros((n_tests))
for idx, alpha in enumerate(test_alphas):
ref_Cs[idx] = refs[idx]['mat_stiffness']
ref_epss[idx] = refs[idx]['mat_thermal_strain']
normalization_factor_mech[idx] = refs[idx]['normalization_factor_mech']
effSref[idx] = np.hstack(
(refs[idx]['eff_stiffness'], -np.reshape(refs[idx]['eff_stiffness'] @ refs[idx]['eff_thermal_strain'], (-1, 1))))
err_indicators, err_eff_S, err_eff_C, err_eff_eps = [np.zeros((n_hierarchical_levels, n_tests)) for _ in range(4)]
interpolate_temp = lambda x1, x2, alpha: x1 + alpha * (x2 - x1)
err = lambda x, y: la.norm(x - y) / la.norm(y) * 100
# alpha_all_levels is initialized with the first level of two samples
alpha_all_levels = [np.linspace(0, 1, num=2)] if not given_alpha_levels else sampling_alphas
file = h5py.File(out_file, 'w')
for level in range(n_hierarchical_levels):
print(f'\n --- {level = :.2f} --- \n')
# read sampling data given current sampling points. note that samples are reread in the next hierarchical level
# but as long as everything is stored is h5 & no solvers are called there's no need for optimizing performance here
alphas = alpha_all_levels[level]
temperatures = interpolate_temp(temp1, temp2, alphas)
n_samples = len(alphas)
_, samples = read_h5(file_name, data_path, temperatures, get_mesh=False)
# lists that contain quantities from sampling pairs
E01s, sampling_Cs, sampling_epss = [], [], []
for id0 in range(n_samples - 1):
id1 = id0 + 1
E0 = samples[id0]['strain_localization']
E1 = samples[id1]['strain_localization']
E01s.append(np.ascontiguousarray(np.concatenate((E0, E1), axis=-1)))
# n_samples of [n_phases x 2 x 6 x 6]
sampling_Cs.append(np.stack((samples[id0]['mat_stiffness'], samples[id1]['mat_stiffness'])).transpose([1, 0, 2, 3]))
# n_samples of [n_phases x 2 x 6 x 1]
sampling_epss.append(
np.stack((samples[id0]['mat_thermal_strain'], samples[id1]['mat_thermal_strain'])).transpose([1, 0, 2, 3]))
# alphas_indexing will contain the id of each pair of samples needed to solve the problem at a specific temperature
# temperatures are determined by the values contained in tes_alphas
alphas_indexing = np.searchsorted(alphas, test_alphas) - 1
alphas_indexing[0] = 0
current_sampling_id = None
K0, K1, F0, F1, F2, F3, S001, S101, S103, S002, S102, S104 = [None for _ in range(12)]
for idx, alpha in enumerate(test_alphas):
print(f'{alpha = :.2f}')
sampling_C = sampling_Cs[alphas_indexing[idx]]
sampling_eps = sampling_epss[alphas_indexing[idx]]
# interpolated quantities using an implicit interpolation scheme with four DOF
alpha_C, alpha_eps = opt4_alphas(sampling_C, sampling_eps, ref_Cs[idx], ref_epss[idx])
alpha_C_eps = alpha_C * alpha_eps
# Assemble the linear system only when new samples are considered
if alphas_indexing[idx] != current_sampling_id:
current_sampling_id = alphas_indexing[idx]
K0, K1, F0, F1, F2, F3, S001, S101, S103, S002, S102, S104 = update_affine_decomposition(
E01s[current_sampling_id], sampling_C, sampling_eps, n_modes, n_phases, n_gp, strain_dof, mat_id, n_gauss)
phi = get_phi(K0, K1, F0, F1, F2, F3, alpha_C, alpha_eps, alpha_C_eps)
speed = 1
if speed == 0:
C, eps = ref_Cs[idx], ref_epss[idx]
# C, eps = opt4(sampling_C, sampling_eps, ref_Cs[idx], ref_epss[idx])
_, effSopt = interpolate_fluctuation_modes(E01s[current_sampling_id], C, eps, mat_id, n_gauss, strain_dof,
n_modes, n_gp)
elif speed == 1:
effSopt = effective_stress_localization(E01s[current_sampling_id], phi, ref_Cs[idx], ref_epss[idx], mat_id,
n_gauss, n_gp, strain_dof, n_modes)
elif speed == 2:
# matches the result from interpolate_fluctuation_modes with a difference
# that depends on using ref_Cs[idx],ref_epss[idx] instead of alphas
effSopt, phi = effective_S(phi, S001, S101, S103, S002, S102, S104, alpha_C, np.squeeze(alpha_eps, axis=-1),
np.squeeze(alpha_C_eps, axis=-1))
else:
raise NotImplementedError()
if not given_alpha_levels:
Eopt4 = transform_strain_localization(E01s[current_sampling_id], phi, n_gp, strain_dof, n_modes)
Sopt4 = construct_stress_localization(Eopt4, ref_Cs[idx], ref_epss[idx], mat_id, n_gauss, strain_dof)
err_indicators[level,
idx] = np.mean(np.max(np.abs(compute_err_indicator_efficient(Sopt4, global_gradient)),
axis=0)) / normalization_factor_mech[idx] * 100
err_eff_S[level, idx] = err(effSopt, effSref[idx])
Capprox = effSopt[:6, :6]
Cref = effSref[idx][:6, :6]
invL = la.inv(la.cholesky(Cref))
err_eff_C[level, idx] = la.norm(invL @ Capprox @ invL.T - np.eye(6)) / la.norm(np.eye(6)) * 100
err_eff_eps[level, idx] = err(la.solve(Capprox, effSopt[:, -1]), la.solve(Cref, effSref[idx][:, -1]))
# TODO remove dtype='f'
group = file.require_group(f'{data_path}_level{level}')
# group.attrs['sampling_strategy'] = "model description"
temperature = test_temperatures[idx]
dset_stiffness = group.require_dataset(f'eff_stiffness_{temperature:07.2f}', (6, 6), dtype='f')
dset_thermal_strain = group.require_dataset(f'eff_thermal_strain_{temperature:07.2f}', (6), dtype='f')
dset_stiffness[:] = Capprox.T
dset_thermal_strain[:] = la.solve(Capprox, effSopt[:, -1])
if not given_alpha_levels:
max_err_idx = np.argmax(err_indicators[level])
alpha_all_levels.append(np.unique(np.sort(np.hstack((alphas, test_alphas[max_err_idx])))))
file.close()
idx = [idx for idx, microstructure in enumerate(microstructures) if file_name == microstructure['file_name']][0]
np.savez_compressed(f'output/eg4_{idx}', n_hierarchical_levels=n_hierarchical_levels, test_temperatures=test_temperatures,
err_indicators=err_indicators, err_eff_S=err_eff_S, err_eff_C=err_eff_C, err_eff_eps=err_eff_eps,
alpha_all_levels=np.asarray(alpha_all_levels, dtype=object))
# %%
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from utilities import plot_and_save, cm
from matplotlib.ticker import FormatStrFormatter
# loaded_qoi = np.load(f'output/eg4_{idx}.npz', allow_pickle=True)
# n_hierarchical_levels = loaded_qoi['n_hierarchical_levels']
# test_temperatures = loaded_qoi['test_temperatures']
# err_indicators = loaded_qoi['err_indicators']
# err_eff_S = loaded_qoi['err_eff_S']
# err_eff_C = loaded_qoi['err_eff_C']
# err_eff_eps = loaded_qoi['err_eff_eps']
# alpha_all_levels = loaded_qoi['alpha_all_levels']
temp1 = test_temperatures[0]
temp2 = test_temperatures[-1]
interpolate_temp = lambda x1, x2, alpha: x1 + alpha * (x2 - x1)
for level in range(n_hierarchical_levels):
print(f'alphas of level {level}: {alpha_all_levels[level]}')
print('\n')
for level in range(n_hierarchical_levels):
print(f'temperatures of level {level}: {interpolate_temp(temp1, temp2, alpha_all_levels[level])}')
print('\n')
for level in range(n_hierarchical_levels):
print(f'level {level}')
print(f'{np.max(err_indicators[level]) = }')
xlabel = 'Temperature [K]'
styles = ['-', '-', '--', '-.', ':', ':', ':', ':']
markers = ['s', 'd', '+', 'x', 'o']
colors = ['C0', 'C1', 'C2', 'C3', 'C4']
if not given_alpha_levels:
ylabel = 'Relative error $e_\mathsf{I}$ [\%]'
fig_name = f'eg4_{idx}_hierarchical_sampling_err_indicator'
plt.figure(figsize=(6 * cm, 6 * cm), dpi=600)
for level in range(n_hierarchical_levels):
plt.plot(test_temperatures, err_indicators[level], label=f'{level + 2} samples', marker=markers[level],
color=colors[level], linestyle=styles[level], markevery=8)
plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plot_and_save(xlabel, ylabel, fig_name, [temp1, temp2], [0, np.max(err_indicators)], loc='upper left')
ylabel = 'Relative error $e_{\overline{\mathsf{S}}}$ [\%]'
fig_name = f'eg4_{idx}_hierarchical_sampling_err_eff_stress_localization'
plt.figure(figsize=(6 * cm, 6 * cm), dpi=600)
for level in range(n_hierarchical_levels):
plt.plot(test_temperatures, err_eff_S[level], label=f'{level + 2} samples', marker=markers[level], color=colors[level],
linestyle=styles[level], markevery=8)
plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plot_and_save(xlabel, ylabel, fig_name, [temp1, temp2], [0, np.max(err_eff_S)], loc='upper left')
ylabel = 'Relative error $e_{\overline{\mathbb{C}}}$ [\%]'
fig_name = f'eg4_{idx}_hierarchical_sampling_err_eff_stiffness'
plt.figure(figsize=(6 * cm, 6 * cm), dpi=600)
for level in range(n_hierarchical_levels):
plt.plot(test_temperatures, err_eff_C[level], label=f'{level + 2} samples', marker=markers[level], color=colors[level],
linestyle=styles[level], markevery=8)
plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plot_and_save(xlabel, ylabel, fig_name, [temp1, temp2], [0, np.max(err_eff_C)], loc='upper left')
ylabel = r'Relative error $e_{\overline{\boldmath{\varepsilon}}_{\uptheta}}$ [\%]'
fig_name = f'eg4_{idx}_hierarchical_sampling_err_eff_thermal_strain'
plt.figure(figsize=(6 * cm, 6 * cm), dpi=600)
for level in range(n_hierarchical_levels):
plt.plot(test_temperatures, err_eff_eps[level], label=f'{level + 2} samples', marker=markers[level], color=colors[level],
linestyle=styles[level], markevery=8)
plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plot_and_save(xlabel, ylabel, fig_name, [temp1, temp2], [0, np.max(err_eff_eps)], loc='upper left')
print(np.max(err_indicators))
print(np.max(err_eff_S))
print(np.max(err_eff_C))
print(np.max(err_eff_eps))