-
Notifications
You must be signed in to change notification settings - Fork 0
/
Trainer.py
196 lines (167 loc) · 7.96 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from sklearn.metrics import classification_report, confusion_matrix
import datetime
import tensorflow as tf
import numpy as np
import os
class Trainer(object):
def __init__(self, train_images, train_labels, valid_images, valid_labels, model, epochs, batch_size):
self.model = model
with self.model.graph.as_default():
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
self.train_images = train_images #images for training
self.train_labels = train_labels #labels for training
self.valid_images = valid_images #images for validation
self.valid_labels = valid_labels #labels for validation
self.val_accuracy = 0
self.train_accuracy = 0
self.train_loss = 0
self.val_loss = 0
self._epochs_training = 0
self.epochs = epochs
self.batch_size = batch_size
def train(self):
"""
Train the model for self.epochs number of epochs, calling _train_epoch()
and validate() functions
"""
# Create new TensorBoard log for each invocation of this function.
datetime_str = datetime.datetime.now().strftime('%Y-%m-%d %Hh%Mm%Ss')
# crates tensorboard log
self.writer_train = tf.summary.FileWriter(logdir=os.path.join(".", "mainLogs", "trainer", datetime_str, "train"), graph=self.model.graph)
self.writer_val = tf.summary.FileWriter(logdir=os.path.join(".", "mainLogs", "trainer", datetime_str, "val"), graph=self.model.graph)
print("Training starts")
while True:
# training part
loss_train, accuracy_train = self._train_epoch()
print("-------------------\nValidation\n---------------")
#validation part
loss_val, accuracy_val, _ = self.validate(self.valid_images, self.valid_labels, self.batch_size)
# Compute summaries, and write them to TensorBoard log.
# Instead of using get_summary, you can return self.model.summary and directly input that in to the add_summary
summary_train = self.get_summary(loss_train, accuracy_train)
summary_val = self.get_summary(loss_val, accuracy_val)
self.writer_train.add_summary(summary_train, self._epochs_training)
self.writer_val.add_summary(summary_val, self._epochs_training)
#summary part ends here
if self._epochs_training == self.epochs:
print("\n\nTreniranje je zavrseno\n\n")
break
def validate(self, valid_images, valid_labels, batch_size):
"""
Validates the model (ALSO USED FOR TESTING!)
Parameters
----------
valid_images: images
valid_labels: corresponding labels
batch_size: size of one batch
Returns
-------
Loss and accuracy computed on the (valid_images,valid_labels)
"""
print(batch_size)
with self.model.graph.as_default():
self.val_accuracy=0
self.val_loss=0
# calculate number of batches
batch_count = int(len(valid_labels) / batch_size)
# these lists are used for calculating confusion matrix
pred_list=list()
actual_list=list()
for batch_id in range(batch_count):
batch_start = batch_id * batch_size
batch_end = min(batch_start + batch_size,len(valid_labels))
# on the last batch, batch size may not be batch_size
actual_batch_size = batch_end-batch_start
images = valid_images[batch_start:batch_end]
labels = valid_labels[batch_start:batch_end]
accuracy, loss, summary, predictions = self.session.run(
# WE HAVENT PROVIDED self.model.optimizer TO THE FETCHES,
# SO WE DO NOT DO BACKPROP
fetches=(self.model.accuracy, self.model.loss, self.model.
summary, self.model.prob
),
feed_dict={self.model.images: np.expand_dims(images, 3),
self.model.labels: labels
}
)
max_pred = np.argmax(predictions, axis=1)
pred_list.extend(max_pred)
actual_list.extend(labels)
self.val_accuracy += accuracy*actual_batch_size
self.val_loss += loss*actual_batch_size
self.val_accuracy = self.val_accuracy / len(valid_labels)
self.val_loss = self.val_loss / len(valid_labels)
print('accuracy in validation: {}'.format(self.val_accuracy))
actual_list = [ int(x) for x in actual_list ]
return self.val_loss, self.val_accuracy, confusion_matrix(actual_list, pred_list)
def _train_epoch(self):
"""
Trains the model for one epoch
Returns
-------
Loss and accuracy on the training set for one epoch
"""
with self.model.graph.as_default():
#self.session.run(self.model.reset_accuracy)
indices1 = np.arange(self.train_labels.shape[0])
np.random.shuffle(indices1)
self.train_images=self.train_images[indices1]
self.train_labels=self.train_labels[indices1]
self.train_accuracy=0
self.train_loss=0
batch_count = int(len(self.train_labels) / self.batch_size)
for batch_id in range(batch_count):
batch_start = batch_id * self.batch_size
batch_end = min(batch_start + self.batch_size,len(self.train_labels))
# on the last batch, batch size may not be batch_size
actual_batch_size = batch_end-batch_start
images = self.train_images[batch_start:batch_end]
labels = self.train_labels[batch_start:batch_end]
accuracy, loss, _, summary, prob = self.session.run( # PROVIDING self.model.optimizer MEANS THAT WE DO BACKPROP
fetches=(self.model.accuracy, self.model.loss,
self.model.optimizer, self.model.summary,
self.model.prob
),
feed_dict={self.model.images: np.expand_dims(images, 3),
self.model.labels: labels
}
)
self.train_accuracy+=accuracy*actual_batch_size
self.train_loss+=loss*actual_batch_size
self._epochs_training += 1
self.train_accuracy = self.train_accuracy / len(self.train_labels)
self.train_loss = self.train_loss / len(self.train_labels)
# print loss and accuracy for one epoch
print('\nLOSS:{}'.format(self.train_loss))
print('\nepoch: {}'.format(self._epochs_training))
print('accuracy for epoch:{}: '.format(self.train_accuracy))
return loss, self.train_accuracy
def get_summary(self, loss, accuracy):
"""
Computes summary for given loss and accuracy values.
Parameters
-----
loss: The loss value
accuract: The accuracy value
Returns
-----
A summary containing given loss and accuracy values as two scalars.
"""
return tf.Summary(value=[
tf.Summary.Value(tag="loss", simple_value=loss),
tf.Summary.Value(tag="accuracy", simple_value=accuracy),
])
def save(self, file_path):
"""
Saves model parameters to checkpoint file on disk.
Parameters
-----
file_path : Path to checkpoint file to be created
Returns
-----
None
"""
with self.model.graph.as_default():
self.saver = tf.train.Saver()
self.saver.save(self.session, file_path)