-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunc_pre_post_merge.py
113 lines (96 loc) · 5.04 KB
/
func_pre_post_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import pandas as pd
def merge_pre_post(df, max_col, mors_flag):
uni_id = df['leap_user_key'].unique()
pre_num_list = list()
post_num_list = list()
for i in uni_id:
sub = df[df['leap_user_key'] == i]
if len(sub) > 1:
pre_sub = sub[sub['flag'] == 'pre']
pre_num_list.append(len(pre_sub))
post_sub = sub[sub['flag'] == 'post']
post_num_list.append(len(post_sub))
else:
pre_num_list.append(0)
post_num_list.append(0)
pre_data_list = list()
post_data_list = list()
for i in range(len(uni_id)):
if (post_num_list[i] == 1) and (pre_num_list[i] >= 1):
sub = df[df['leap_user_key'] == uni_id[i]]
post_sub = sub[sub['flag'] == 'post']
post_sub = post_sub.sort_values('assessment_date')
post_sub.reset_index(inplace=True, drop=True)
post_data_list.append(post_sub.iloc[0,:])
pre_sub = sub[sub['flag'] == 'pre']
pre_sub = pre_sub.sort_values('assessment_date')
pre_sub.reset_index(inplace=True, drop=True)
pre_ind = pre_num_list[i] - 1
pre_data_list.append(pre_sub.iloc[pre_ind,:])
for i in range(len(uni_id)):
if (post_num_list[i] > 1) and (pre_num_list[i] == 1):
sub = df[df['leap_user_key'] == uni_id[i]]
post_sub = sub[sub['flag'] == 'post']
post_sub = post_sub.sort_values('assessment_date')
post_sub.reset_index(inplace=True, drop=True)
post_ind = post_num_list[i] - 1
post_data_list.append(post_sub.iloc[post_ind,:])
pre_sub = sub[sub['flag'] == 'pre']
pre_sub = pre_sub.sort_values('assessment_date')
pre_sub.reset_index(inplace=True, drop=True)
pre_data_list.append(pre_sub.iloc[0,:])
for i in range(len(uni_id)):
if (post_num_list[i] > 1) and (pre_num_list[i] > 1):
sub = df[df['leap_user_key'] == uni_id[i]]
post_sub = sub[sub['flag'] == 'post']
post_sub_sorted = post_sub.sort_values('assessment_date')
pre_sub = sub[sub['flag'] == 'pre']
pre_sub_sorted = pre_sub.sort_values('assessment_date')
pre_sub_sorted.reset_index(inplace=True, drop=True)
post_sub_sorted.reset_index(inplace=True, drop=True)
if post_sub_sorted.loc[0,'assessment_date'] > pre_sub_sorted.loc[(pre_num_list[i]-1),'assessment_date']:
post_ind = post_num_list[i] - 1
post_data_list.append(post_sub_sorted.iloc[post_ind,:])
pre_ind = pre_num_list[i] - 1
pre_data_list.append(pre_sub_sorted.iloc[pre_ind,:])
else:
print('multiple')
pre_data_df = pd.DataFrame(pre_data_list)
pre_data_df.reset_index(inplace=True, drop=True)
post_data_df = pd.DataFrame(post_data_list)
post_data_df.reset_index(inplace=True, drop=True)
if mors_flag == 0:
uni_id = post_data_df['leap_user_key'].unique()
pre_post_list = list()
for i in range(len(uni_id)):
pre_sub = pre_data_df[pre_data_df['leap_user_key'] == uni_id[i]]
post_sub = post_data_df[post_data_df['leap_user_key'] == uni_id[i]]
info = post_sub.iloc[:,0:max_col]
pre_score = pre_sub.loc[:,'total_final']
post_score = post_sub.loc[:,'total_final']
pre_post = pd.concat([info, pre_score, post_score], axis=1)
info_cols = list(info.columns)
pre_post.columns = info_cols + ['pre_total', 'post_total']
pre_post_list.append(pre_post.iloc[0,:])
pre_post_df = pd.DataFrame(pre_post_list)
pre_post_df.reset_index(inplace=True, drop=True)
pre_post_df['diff'] = pre_post_df['post_total'] - pre_post_df['pre_total']
elif mors_flag == 1:
uni_id = post_data_df['leap_user_key'].unique()
pre_post_list = list()
for i in range(len(uni_id)):
pre_sub = pre_data_df[pre_data_df['leap_user_key'] == uni_id[i]]
post_sub = post_data_df[post_data_df['leap_user_key'] == uni_id[i]]
info = post_sub.iloc[:,0:max_col]
pre_score = pre_sub.loc[:,['invasion_final','warmth_final','total_final']]
post_score = post_sub.loc[:,['invasion_final','warmth_final','total_final']]
pre_post = pd.concat([info, pre_score, post_score], axis=1)
info_cols = list(info.columns)
pre_post.columns = info_cols + ['pre_invasion_total','pre_warmth_total','pre_total','post_invasion_total','post_warmth_total','post_total']
pre_post_list.append(pre_post.iloc[0,:])
pre_post_df = pd.DataFrame(pre_post_list)
pre_post_df.reset_index(inplace=True, drop=True)
pre_post_df['invasion_diff'] = pre_post_df['post_invasion_total'] - pre_post_df['pre_invasion_total']
pre_post_df['warmth_diff'] = pre_post_df['post_warmth_total'] - pre_post_df['pre_warmth_total']
pre_post_df['diff'] = pre_post_df['post_total'] - pre_post_df['pre_total']
return pre_post_df