-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
477 lines (392 loc) · 18.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# pylint: disable=line-too-long
"""Training script for https://arxiv.org/pdf/2002.09405.pdf.
Example usage (from parent directory):
`python -m learning_to_simulate.train --data_path={DATA_PATH} --model_path={MODEL_PATH}`
Evaluate model from checkpoint (from parent directory):
`python -m learning_to_simulate.train --data_path={DATA_PATH} --model_path={MODEL_PATH} --mode=eval`
Produce rollouts (from parent directory):
`python -m learning_to_simulate.train --data_path={DATA_PATH} --model_path={MODEL_PATH} --output_path={OUTPUT_PATH} --mode=eval_rollout`
"""
# pylint: enable=line-too-long
import collections
import functools
import json
import os
import pickle
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
import tree
from learning_to_simulate import learned_simulator
from learning_to_simulate import noise_utils
from learning_to_simulate import reading_utils
flags.DEFINE_enum(
'mode', 'train', ['train', 'eval', 'eval_rollout'],
help='Train model, one step evaluation or rollout evaluation.')
flags.DEFINE_enum('eval_split', 'test', ['train', 'valid', 'test'],
help='Split to use when running evaluation.')
flags.DEFINE_string('data_path', None, help='The dataset directory.')
flags.DEFINE_integer('batch_size', 2, help='The batch size.')
flags.DEFINE_integer('num_steps', int(2e7), help='Number of steps of training.')
flags.DEFINE_float('noise_std', 6.7e-4, help='The std deviation of the noise.')
flags.DEFINE_string('model_path', None,
help=('The path for saving checkpoints of the model. '
'Defaults to a temporary directory.'))
flags.DEFINE_string('output_path', None,
help='The path for saving outputs (e.g. rollouts).')
FLAGS = flags.FLAGS
Stats = collections.namedtuple('Stats', ['mean', 'std'])
INPUT_SEQUENCE_LENGTH = 6 # So we can calculate the last 5 velocities.
NUM_PARTICLE_TYPES = 9
KINEMATIC_PARTICLE_ID = 3
def get_kinematic_mask(particle_types):
"""Returns a boolean mask, set to true for kinematic (obstacle) particles."""
return tf.equal(particle_types, KINEMATIC_PARTICLE_ID)
def prepare_inputs(tensor_dict):
"""Prepares a single stack of inputs by calculating inputs and targets.
Computes n_particles_per_example, which is a tensor that contains information
about how to partition the axis - i.e. which nodes belong to which graph.
Adds a batch axis to `n_particles_per_example` and `step_context` so they can
later be batched using `batch_concat`. This batch will be the same as if the
elements had been batched via stacking.
Note that all other tensors have a variable size particle axis,
and in this case they will simply be concatenated along that
axis.
Args:
tensor_dict: A dict of tensors containing positions, and step context (
if available).
Returns:
A tuple of input features and target positions.
"""
# Position is encoded as [sequence_length, num_particles, dim] but the model
# expects [num_particles, sequence_length, dim].
pos = tensor_dict['position']
pos = tf.transpose(pos, perm=[1, 0, 2])
# The target position is the final step of the stack of positions.
target_position = pos[:, -1]
# Remove the target from the input.
tensor_dict['position'] = pos[:, :-1]
# Compute the number of particles per example.
num_particles = tf.shape(pos)[0]
# Add an extra dimension for stacking via concat.
tensor_dict['n_particles_per_example'] = num_particles[tf.newaxis]
if 'step_context' in tensor_dict:
# Take the input global context. We have a stack of global contexts,
# and we take the penultimate since the final is the target.
tensor_dict['step_context'] = tensor_dict['step_context'][-2]
# Add an extra dimension for stacking via concat.
tensor_dict['step_context'] = tensor_dict['step_context'][tf.newaxis]
return tensor_dict, target_position
def prepare_rollout_inputs(context, features):
"""Prepares an inputs trajectory for rollout."""
out_dict = {**context}
# Position is encoded as [sequence_length, num_particles, dim] but the model
# expects [num_particles, sequence_length, dim].
pos = tf.transpose(features['position'], [1, 0, 2])
# The target position is the final step of the stack of positions.
target_position = pos[:, -1]
# Remove the target from the input.
out_dict['position'] = pos[:, :-1]
# Compute the number of nodes
out_dict['n_particles_per_example'] = [tf.shape(pos)[0]]
if 'step_context' in features:
out_dict['step_context'] = features['step_context']
out_dict['is_trajectory'] = tf.constant([True], tf.bool)
return out_dict, target_position
def batch_concat(dataset, batch_size):
"""We implement batching as concatenating on the leading axis."""
# We create a dataset of datasets of length batch_size.
windowed_ds = dataset.window(batch_size)
# The plan is then to reduce every nested dataset by concatenating. We can
# do this using tf.data.Dataset.reduce. This requires an initial state, and
# then incrementally reduces by running through the dataset
# Get initial state. In this case this will be empty tensors of the
# correct shape.
initial_state = tree.map_structure(
lambda spec: tf.zeros( # pylint: disable=g-long-lambda
shape=[0] + spec.shape.as_list()[1:], dtype=spec.dtype),
dataset.element_spec)
# We run through the nest and concatenate each entry with the previous state.
def reduce_window(initial_state, ds):
return ds.reduce(initial_state, lambda x, y: tf.concat([x, y], axis=0))
return windowed_ds.map(
lambda *x: tree.map_structure(reduce_window, initial_state, x))
def get_input_fn(data_path, batch_size, mode, split):
"""Gets the learning simulation input function for tf.estimator.Estimator.
Args:
data_path: the path to the dataset directory.
batch_size: the number of graphs in a batch.
mode: either 'one_step_train', 'one_step' or 'rollout'
split: either 'train', 'valid' or 'test.
Returns:
The input function for the learning simulation model.
"""
def input_fn():
"""Input function for learning simulation."""
# Loads the metadata of the dataset.
metadata = _read_metadata(data_path)
# Create a tf.data.Dataset from the TFRecord.
ds = tf.data.TFRecordDataset([os.path.join(data_path, f'{split}.tfrecord')])
ds = ds.map(functools.partial(
reading_utils.parse_serialized_simulation_example, metadata=metadata))
if mode.startswith('one_step'):
# Splits an entire trajectory into chunks of 7 steps.
# Previous 5 velocities, current velocity and target.
split_with_window = functools.partial(
reading_utils.split_trajectory,
window_length=INPUT_SEQUENCE_LENGTH + 1)
ds = ds.flat_map(split_with_window)
# Splits a chunk into input steps and target steps
ds = ds.map(prepare_inputs)
# If in train mode, repeat dataset forever and shuffle.
if mode == 'one_step_train':
ds = ds.repeat()
ds = ds.shuffle(512)
# Custom batching on the leading axis.
ds = batch_concat(ds, batch_size)
elif mode == 'rollout':
# Rollout evaluation only available for batch size 1
assert batch_size == 1
ds = ds.map(prepare_rollout_inputs)
else:
raise ValueError(f'mode: {mode} not recognized')
return ds
return input_fn
def rollout(simulator, features, num_steps):
"""Rolls out a trajectory by applying the model in sequence."""
initial_positions = features['position'][:, 0:INPUT_SEQUENCE_LENGTH]
ground_truth_positions = features['position'][:, INPUT_SEQUENCE_LENGTH:]
global_context = features.get('step_context')
def step_fn(step, current_positions, predictions):
if global_context is None:
global_context_step = None
else:
global_context_step = global_context[
step + INPUT_SEQUENCE_LENGTH - 1][tf.newaxis]
next_position = simulator(
current_positions,
n_particles_per_example=features['n_particles_per_example'],
particle_types=features['particle_type'],
global_context=global_context_step)
# Update kinematic particles from prescribed trajectory.
kinematic_mask = get_kinematic_mask(features['particle_type'])
next_position_ground_truth = ground_truth_positions[:, step]
next_position = tf.where(kinematic_mask, next_position_ground_truth,
next_position)
updated_predictions = predictions.write(step, next_position)
# Shift `current_positions`, removing the oldest position in the sequence
# and appending the next position at the end.
next_positions = tf.concat([current_positions[:, 1:],
next_position[:, tf.newaxis]], axis=1)
return (step + 1, next_positions, updated_predictions)
predictions = tf.TensorArray(size=num_steps, dtype=tf.float32)
_, _, predictions = tf.while_loop(
cond=lambda step, state, prediction: tf.less(step, num_steps),
body=step_fn,
loop_vars=(0, initial_positions, predictions),
back_prop=False,
parallel_iterations=1)
output_dict = {
'initial_positions': tf.transpose(initial_positions, [1, 0, 2]),
'predicted_rollout': predictions.stack(),
'ground_truth_rollout': tf.transpose(ground_truth_positions, [1, 0, 2]),
'particle_types': features['particle_type'],
}
if global_context is not None:
output_dict['global_context'] = global_context
return output_dict
def _combine_std(std_x, std_y):
return np.sqrt(std_x**2 + std_y**2)
def _get_simulator(model_kwargs, metadata, acc_noise_std, vel_noise_std):
"""Instantiates the simulator."""
# Cast statistics to numpy so they are arrays when entering the model.
cast = lambda v: np.array(v, dtype=np.float32)
acceleration_stats = Stats(
cast(metadata['acc_mean']),
_combine_std(cast(metadata['acc_std']), acc_noise_std))
velocity_stats = Stats(
cast(metadata['vel_mean']),
_combine_std(cast(metadata['vel_std']), vel_noise_std))
normalization_stats = {'acceleration': acceleration_stats,
'velocity': velocity_stats}
if 'context_mean' in metadata:
context_stats = Stats(
cast(metadata['context_mean']), cast(metadata['context_std']))
normalization_stats['context'] = context_stats
simulator = learned_simulator.LearnedSimulator(
num_dimensions=metadata['dim'],
connectivity_radius=metadata['default_connectivity_radius'],
graph_network_kwargs=model_kwargs,
boundaries=metadata['bounds'],
num_particle_types=NUM_PARTICLE_TYPES,
normalization_stats=normalization_stats,
particle_type_embedding_size=16)
return simulator
def get_one_step_estimator_fn(data_path,
noise_std,
latent_size=128,
hidden_size=128,
hidden_layers=2,
message_passing_steps=10):
"""Gets one step model for training simulation."""
metadata = _read_metadata(data_path)
model_kwargs = dict(
latent_size=latent_size,
mlp_hidden_size=hidden_size,
mlp_num_hidden_layers=hidden_layers,
num_message_passing_steps=message_passing_steps)
def estimator_fn(features, labels, mode):
target_next_position = labels
simulator = _get_simulator(model_kwargs, metadata,
vel_noise_std=noise_std,
acc_noise_std=noise_std)
# Sample the noise to add to the inputs to the model during training.
sampled_noise = noise_utils.get_random_walk_noise_for_position_sequence(
features['position'], noise_std_last_step=noise_std)
non_kinematic_mask = tf.logical_not(
get_kinematic_mask(features['particle_type']))
noise_mask = tf.cast(
non_kinematic_mask, sampled_noise.dtype)[:, tf.newaxis, tf.newaxis]
sampled_noise *= noise_mask
# Get the predictions and target accelerations.
pred_target = simulator.get_predicted_and_target_normalized_accelerations(
next_position=target_next_position,
position_sequence=features['position'],
position_sequence_noise=sampled_noise,
n_particles_per_example=features['n_particles_per_example'],
particle_types=features['particle_type'],
global_context=features.get('step_context'))
pred_acceleration, target_acceleration = pred_target
# Calculate the loss and mask out loss on kinematic particles/
loss = (pred_acceleration - target_acceleration)**2
num_non_kinematic = tf.reduce_sum(
tf.cast(non_kinematic_mask, tf.float32))
loss = tf.where(non_kinematic_mask, loss, tf.zeros_like(loss))
loss = tf.reduce_sum(loss) / tf.reduce_sum(num_non_kinematic)
global_step = tf.train.get_global_step()
# Set learning rate to decay from 1e-4 to 1e-6 exponentially.
min_lr = 1e-6
lr = tf.train.exponential_decay(learning_rate=1e-4 - min_lr,
global_step=global_step,
decay_steps=int(5e6),
decay_rate=0.1) + min_lr
opt = tf.train.AdamOptimizer(learning_rate=lr)
train_op = opt.minimize(loss, global_step)
# Calculate next position and add some additional eval metrics (only eval).
predicted_next_position = simulator(
position_sequence=features['position'],
n_particles_per_example=features['n_particles_per_example'],
particle_types=features['particle_type'],
global_context=features.get('step_context'))
predictions = {'predicted_next_position': predicted_next_position}
eval_metrics_ops = {
'loss_mse': tf.metrics.mean_squared_error(
pred_acceleration, target_acceleration),
'one_step_position_mse': tf.metrics.mean_squared_error(
predicted_next_position, target_next_position)
}
return tf.estimator.EstimatorSpec(
mode=mode,
train_op=train_op,
loss=loss,
predictions=predictions,
eval_metric_ops=eval_metrics_ops)
return estimator_fn
def get_rollout_estimator_fn(data_path,
noise_std,
latent_size=128,
hidden_size=128,
hidden_layers=2,
message_passing_steps=10):
"""Gets the model function for tf.estimator.Estimator."""
metadata = _read_metadata(data_path)
model_kwargs = dict(
latent_size=latent_size,
mlp_hidden_size=hidden_size,
mlp_num_hidden_layers=hidden_layers,
num_message_passing_steps=message_passing_steps)
def estimator_fn(features, labels, mode):
del labels # Labels to conform to estimator spec.
simulator = _get_simulator(model_kwargs, metadata,
acc_noise_std=noise_std,
vel_noise_std=noise_std)
num_steps = metadata['sequence_length'] - INPUT_SEQUENCE_LENGTH
rollout_op = rollout(simulator, features, num_steps=num_steps)
squared_error = (rollout_op['predicted_rollout'] -
rollout_op['ground_truth_rollout']) ** 2
loss = tf.reduce_mean(squared_error)
eval_ops = {'rollout_error_mse': tf.metrics.mean_squared_error(
rollout_op['predicted_rollout'], rollout_op['ground_truth_rollout'])}
# Add a leading axis, since Estimator's predict method insists that all
# tensors have a shared leading batch axis fo the same dims.
rollout_op = tree.map_structure(lambda x: x[tf.newaxis], rollout_op)
return tf.estimator.EstimatorSpec(
mode=mode,
train_op=None,
loss=loss,
predictions=rollout_op,
eval_metric_ops=eval_ops)
return estimator_fn
def _read_metadata(data_path):
with open(os.path.join(data_path, 'metadata.json'), 'rt') as fp:
return json.loads(fp.read())
def main(_):
"""Train or evaluates the model."""
if FLAGS.mode in ['train', 'eval']:
estimator = tf.estimator.Estimator(
get_one_step_estimator_fn(FLAGS.data_path, FLAGS.noise_std),
model_dir=FLAGS.model_path)
if FLAGS.mode == 'train':
# Train all the way through.
estimator.train(
input_fn=get_input_fn(FLAGS.data_path, FLAGS.batch_size,
mode='one_step_train', split='train'),
max_steps=FLAGS.num_steps)
else:
# One-step evaluation from checkpoint.
eval_metrics = estimator.evaluate(input_fn=get_input_fn(
FLAGS.data_path, FLAGS.batch_size,
mode='one_step', split=FLAGS.eval_split))
logging.info('Evaluation metrics:')
logging.info(eval_metrics)
elif FLAGS.mode == 'eval_rollout':
if not FLAGS.output_path:
raise ValueError('A rollout path must be provided.')
rollout_estimator = tf.estimator.Estimator(
get_rollout_estimator_fn(FLAGS.data_path, FLAGS.noise_std),
model_dir=FLAGS.model_path)
# Iterate through rollouts saving them one by one.
metadata = _read_metadata(FLAGS.data_path)
rollout_iterator = rollout_estimator.predict(
input_fn=get_input_fn(FLAGS.data_path, batch_size=1,
mode='rollout', split=FLAGS.eval_split))
for example_index, example_rollout in enumerate(rollout_iterator):
example_rollout['metadata'] = metadata
filename = f'rollout_{FLAGS.eval_split}_{example_index}.pkl'
filename = os.path.join(FLAGS.output_path, filename)
logging.info('Saving: %s.', filename)
if not os.path.exists(FLAGS.output_path):
os.mkdir(FLAGS.output_path)
with open(filename, 'wb') as file:
pickle.dump(example_rollout, file)
if __name__ == '__main__':
tf.disable_v2_behavior()
app.run(main)