forked from Azure/MachineLearningNotebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
51 lines (38 loc) · 1.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import os
import argparse
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from azureml.core.run import Run
from sklearn.externals import joblib
import numpy as np
os.makedirs('./outputs', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str,
dest='data_folder', help='data folder')
args = parser.parse_args()
print('Data folder is at:', args.data_folder)
print('List all files: ', os.listdir(args.data_folder))
X = np.load(os.path.join(args.data_folder, 'features.npy'))
y = np.load(os.path.join(args.data_folder, 'labels.npy'))
run = Run.get_context()
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}
# list of numbers from 0.0 to 1.0 with a 0.05 interval
alphas = np.arange(0.0, 1.0, 0.05)
for alpha in alphas:
# Use Ridge algorithm to create a regression model
reg = Ridge(alpha=alpha)
reg.fit(data["train"]["X"], data["train"]["y"])
preds = reg.predict(data["test"]["X"])
mse = mean_squared_error(preds, data["test"]["y"])
run.log('alpha', alpha)
run.log('mse', mse)
model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha)
with open(model_file_name, "wb") as file:
joblib.dump(value=reg, filename='outputs/' + model_file_name)
print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse))