-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
253 lines (185 loc) · 7.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Official Code Implementation of:
"A Gated and Bifurcated Stacked U-Net Module for Document Image Dewarping"
Authors: Hmrishav Bandyopadhyay,
Tanmoy Dasgupta,
Nibaran Das,
Mita Nasipuri
Code: Hmrishav Bandyopadhyay
Code references:
>>>https://github.com/wuleiaty/DocUNet
"""
import argparse
import cv2
import numpy as np
import os
import time
import torch
from torch import nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import models
import torchvision.transforms
from tqdm import tqdm
from loader.dataset import DataSet
from model import Net
from utils.plot_me import plot
from utils.utils_model import initialize_weights
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=0.005, help='learning rate')
parser.add_argument('--epochs', default=100, help='epochs')
parser.add_argument('--batch-size', default=16, help='batch size')
parser.add_argument('--data-path', default='./data_gen/',help='dataset path')
parser.add_argument('--pre-trained', default=False,type=str2bool, help='use pre trained model')
parser.add_argument('--pre-trained-path',help='pre trained model path')
parser.add_argument('--parallel',default=False,type=str2bool,help='Set to True to train on parallel GPUs')
parser.add_argument('--beta1',default=0.9,help='Beta Values for Adam Optimizer')
parser.add_argument('--beta2',default=0.999,help='Beta Values for Adam Optimizer')
parser.add_argument('--log',default=True,type=str2bool,help='Set to False to stop logging')
parser.add_argument('--save-path',default="./model_save",help='Save Model')
parser.add_argument('--testing',default=True,type=str2bool,help='To test or not to test')
return parser.parse_args()
pre=0
def scheduler(epoch):
global pre
if pre:
return 1
if epoch<=1:
return 0.6
else:
return 1
def clear():
if os.name == 'nt':
_ = os.system('cls')
else:
_ = os.system('clear')
def train(model,batch_size, first,epochs, train_data,test_data, optimizer,save_path,log,testing):
global pre
if pre:
testing=False
if save_path[-1]!='/':
save_path=save_path+'/'
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True,num_workers=64)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True,num_workers=64)
loss_grid= nn.MSELoss()
loss_edge=nn.BCEWithLogitsLoss()
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler)
if log:
training_loss=[]
validation_loss=[]
if testing and not pre:
first=-1
print("\n \nSTARTING PRELIMINARY TESTS------------------\n Model starts training after test")
time.sleep(5)
loss_train=[]
loss_val=[]
for epoch in range(first+1,epochs):
print("Epoch ",epoch)
model.train()
if not testing:
print("Learning Rate",optimizer.param_groups[0]['lr'])
lamda=0.9
train_samples=len(train_loader.dataset)
loss_sum_train=0
batches=int(len(train_loader.dataset)/batch_size)
train_samples=batches*batch_size
with tqdm(total=batches) as pbar:
for inputs, edges,grid in train_loader:
inputs, edges,grid= inputs.cuda(), edges.cuda(), grid.cuda()
out1,out2=model(inputs.float())
grid=grid.squeeze()
optimizer.zero_grad()
loss_grid=nn.MSELoss()(out1,grid)
loss_output=loss_grid+(lamda*(nn.BCELoss()(out2.float(),edges.float())))
loss_output.backward()
optimizer.step()
if testing:
pbar.update(batches)
break
del grid,out1,out2,edges
loss_sum_train += float(loss_grid)
pbar.update(1)
if not testing:
loss_train.append(loss_sum_train/train_samples)
print('Epoch {}, Training Loss{:.9f}'.format(str(epoch), (loss_sum_train/train_samples)))
with torch.no_grad():
model.eval()
test_samples=len(test_loader.dataset)
batches=int(test_samples/batch_size)
test_samples=batches*batch_size
loss_sum_val=0
with tqdm(total=batches) as pbar:
for inputs, edges,grid in test_loader:
if testing:
pbar.update(batches)
break
inputs, edges,grid= inputs.cuda(), edges.cuda(), grid.cuda()
outputs= model(inputs)
output=outputs[0].squeeze()
grid=grid.squeeze()
loss_grid=nn.MSELoss()(output,grid)
loss_sum_val += float(loss_grid)
pbar.update(1)
if not testing:
print('Epoch {}, Validation Loss{:.9f}'.format(epoch,(loss_sum_val/test_samples)))
loss_val.append(loss_sum_val/test_samples)
lr_scheduler.step()
if log and not testing:
with open(save_path + 'loss.txt', 'a') as f:
str1="Epoch "+str(epoch)+" Training Loss"+str((loss_sum_train/train_samples))+'\t'+"Val loss"+str((loss_sum_val/test_samples))+'\n'
f.write(str1)
plot(loss_train,loss_val,save_path)
torch.save(model.state_dict(), save_path + str(epoch) + '.pt')
if testing:
testing=False
print("Testing Complete-----Beginning to train...")
time.sleep(3)
clear()
continue
clear()
parser = get_args()
model_save_path =parser.save_path
if not os.path.isdir(model_save_path):
os.mkdir(model_save_path)
data_path = parser.data_path
assert data_path and os.path.isdir(data_path), 'Wrong Data path'
model = Net()
if parser.parallel:
model=torch.nn.DataParallel(model).cuda()
else:
model=model.cuda()
model.apply(initialize_weights)
print("Weights initialized by kaiming initialization")
optimizer = optim.Adam(model.parameters(), lr=float(parser.lr),betas=(float(parser.beta1),float(parser.beta2)))
first=0
if parser.pre_trained:
pre=1
assert os.path.exists(parser.pre_trained_path), 'Wrong path for pre-trained model'
model_dict = model.state_dict()
state_dict = torch.load(parser.pre_trained_path)
state_dict = {k: v for k, v in state_dict.items() if k in model_dict}
model_dict.update(state_dict)
model.load_state_dict(state_dict)
print(f'model {parser.pre_trained_path} loaded')
path1=parser.pre_trained_path
first=int(path1[path1.rindex("/")+1:path1.rindex(".")])
print("Starting Training from {}".format(first))
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()])
transform_test = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()])
dataset_train = DataSet(os.path.join(data_path, 'image'), os.path.join(data_path, 'label'), transform)
dataset_test = DataSet(os.path.join(data_path, 'image_test'), os.path.join(data_path, 'label'), transform)
if parser.testing:
print("You have opted for tests")
train(model, int(parser.batch_size), first,int(parser.epochs), dataset_train,dataset_test, optimizer, parser.save_path,parser.log,parser.testing)