-
Notifications
You must be signed in to change notification settings - Fork 9
/
GLUE.r
538 lines (421 loc) · 23.9 KB
/
GLUE.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
####The main function to automatically realize the GLUE procedure for parameter estimation for DSSAT model.####
time_test <- Sys.time()
print(paste0("Calibration started at ", time_test))
#list.of.packages <- c("rjson", "parallel")
list.of.packages <- c("parallel")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages, repos = "http://cran.us.r-project.org")
#library(rjson)
parallel_available <- require("parallel")
library(parallel)
#################Step 1: Get the fundamental information for GLUE procedure.##############
tryCatch({
## (1) Get the name of the batch file that was generated with GenSelect.
#CultivarBatchFile<-"Prisma_GC_Avg.MZC";
##Which batch file generated by GenSelect should be used? This information should be given to GLUE when
##model users decide to use this program.
## (2) Get the information about the working directory of GLUE program (WD),
#model output storage directory (OD) and DSSAT (DSSATD).
WorkDirectory<-getwd();
#read json file
#GLUE_defs <- fromJSON(file = paste0(WorkDirectory, "/GLUEDefs.json"))
#NumberOfModelRun <- as.numeric(GLUE_defs$NumberOfModelRun)
#GLUEFlag <- as.numeric(GLUE_defs$GLUEFlag)
#CultivarBatchFile<-GLUE_defs$CultivarBatchFile;
#Cores <- GLUE_defs$Cores
#EcotypeCalibration <- GLUE_defs$EcotypeCalibration
#WD<- GLUE_defs$GLUED
#OD<- GLUE_defs$OutputD
#GD<- GLUE_defs$GenotypeD
#DSSATD <- GLUE_defs$DSSATD
SimulationControl<-read.csv(paste0(WorkDirectory,'/SimulationControl.csv'), header=T);
NumberOfModelRun <- SimulationControl[SimulationControl$Variable == "NumberOfModelRun","Value"]
GLUEFlag <- SimulationControl[SimulationControl$Variable == "GLUEFlag","Value"]
CultivarBatchFile <- SimulationControl[SimulationControl$Variable == "CultivarBatchFile","Value"]
Cores <- as.integer(SimulationControl[SimulationControl$Variable == "Cores","Value"])
EcotypeCalibration <- SimulationControl[SimulationControl$Variable == "EcotypeCalibration","Value"]
WD <- SimulationControl[SimulationControl$Variable == "GLUED","Value"]
OD<- SimulationControl[SimulationControl$Variable == "OutputD","Value"]
GD<- SimulationControl[SimulationControl$Variable == "GenotypeD","Value"]
DSSATD <- SimulationControl[SimulationControl$Variable == "DSSATD","Value"]
ModelID <- SimulationControl[SimulationControl$Variable == "ModelID","Value"]
#add slash at the end to the path if missing
WD <- ifelse(substr(WD, nchar(WD), nchar(WD)) != '/', paste0(WD,"/"), WD)
OD <- ifelse(substr(OD, nchar(OD), nchar(OD)) != '/', paste0(OD,"/"), OD)
GD <- ifelse(substr(GD, nchar(GD), nchar(GD)) != '/', paste0(GD,"/"), GD)
DSSATD <- ifelse(substr(DSSATD, nchar(DSSATD), nchar(DSSATD)) != '/', paste0(DSSATD,"/"), DSSATD)
#If "Cores "variable is not a number, it will assume the simulation will carried out on the
#HiPerGator (SLURM job scheduler) and use CORES specified in your bash file (.sh)
if(!is.numeric(Cores) | is.na(Cores)){
Cores = as.integer(Sys.getenv("SLURM_CPUS_ON_NODE"))
print(paste0("Cores being used: ",Cores))
}
eval(parse(text=paste("ModelRunIndicatorPath='",OD,"ModelRunIndicator.txt'",sep = '')));
if(parallel_available == FALSE) {
write("Missing parallel library required for cultivar calibration.", file = ModelRunIndicatorPath, append = T);
return()
}
glueWarningLogFile <- file.path(OD, "GlueWarning.txt");
glueExcludedModelListFile <- file.path(WD, "GlueExcludedModels.csv");
##Path of the model run indicator file, which indicates which component of GLUE is finished so far.
#command to clean the working directory (Usually GLWork) -- removes everything but the folder BackUp and batch file
#included GLWork.txt as GLUESelect needs this file
if(OD != WD){
unlink(setdiff(list.files(OD, full.names = TRUE),
list.files(OD, pattern='*C$|BackUp|dscsm048|GLWork.txt|GLwork.txt', full.names = TRUE)),
recursive = TRUE)
}else{
warningMsg <- "The output folder cannot be the same as the GLUE working directory. Please inform a different output folder path."
write(warningMsg, file = glueWarningLogFile, ncolumns=1, append = T);
stop(warningMsg)
}
#Check if the number of cores requested is higher than the actually number of cores available.
#If that is the case, GLUE will use the maximum number of cores - 1
detectedCores <- parallel::detectCores()
if(Cores > detectedCores){
Cores <- detectedCores - 1
warningMsg <- paste0("Requested more cores than what is actually available. This machine has ", detectedCores, " cores. GLUE will use ", Cores, " cores.")
write(warningMsg, file = glueWarningLogFile, ncolumns=1, append = T);
}
##WD represents working directory. This is very important, because it is used to tell the main funtion where
##the sub-functions are. DSSATD represents the DSSAT directory. GLUED represents the GLUE directory.
##OutputD represents the output directory under DSSAT, while OD means the final output directory.
##GD ir the directory of genotype files in DSSAT.
## (3) Read the number of model runs and GLUE control flag from the "Simulation Control" file.
#library(xlsReadWrite);
#eval(parse(text = paste("SimulationControl<-read.xls('",WD,
#"/SimulationControl.xls',sheet = 'Sheet 1', rowNames = T, colNames=T)",sep = '')));
newRownames <- SimulationControl[ , 1];
rownames(SimulationControl) <- newRownames;
NumberOfModelRun<-as.numeric(SimulationControl["NumberOfModelRun", "Value"]);
write(c("The number of model runs = ",NumberOfModelRun), file = ModelRunIndicatorPath, ncolumns=2, append = F);
#Read the number of model running.
#GLUEFlag<-as.numeric(SimulationControl[2,"Value"]);
#Set the flag for whole GLUE procedure. If GLUEFlag==1, it means coefficients relative both to phenology and
#growth will be evaluated; GLUEFlag==2, only phenology will be evaluated; GLUEFlag==3, only growth will be evaluated.
## (4) Get the number of round of GLUE.
if (GLUEFlag==1)
{
StartRoundOfGLUE=1
TotalRoundOfGLUE=2;
write("GLUE will run for both phenology and growth.", file = ModelRunIndicatorPath, append = T);
} else if (GLUEFlag==2)
{
StartRoundOfGLUE=1
TotalRoundOfGLUE=1;
write("GLUE will run for phenology only.", file = ModelRunIndicatorPath, append = T);
} else
{
StartRoundOfGLUE=2
TotalRoundOfGLUE=2;
write("GLUE will run for growth only.", file = ModelRunIndicatorPath, append = T);
}
#write("Which round of GLUE to be done is known...", file = ModelRunIndicatorPath, append = T);
#In default, totally two rounds of GLUE will be conducted. In the first round, only the genetic coefficients (P1, P2, p5, PHINT)
#that can influence phenology such as anthesis date and maturity date will be estimated, while other parameters (G2, G3)
#will be fixed at their mean values derived from DSSAT database.In the second round of GLUE, G2 and G3 will be estimated based on the likelihood values derived from growth outputs
#such LAIX, HWAM, CWAM. Finally, the two partial parameter sets will be conbined together to give us a final optimal parameter set.
#If only estimated phenology dates, then only the first round GLUE will be conducted; if only estimated growth, then only the
#second round GLUE will be conducted.
## (5) Get the name of the genotype file of current crop and the name of current model
eval(parse(text=paste("BatchFile<-readLines('",OD,CultivarBatchFile,"',n=-1)",sep = '')));
CropNameAddress<-grep('BATCH', BatchFile);
CropNameStart<-18; #
CropNameEnd<-19; #
CropName<-substr(BatchFile[CropNameAddress], CropNameStart, CropNameEnd);
write(c("Crop =",CropName), file = ModelRunIndicatorPath, ncolumns=2, append = T);
#Get the crop name in this model run.
CultivarIDStart<-20; #
CultivarIDEnd<-25; #Get the Cultivar ID number such as, "IB0001";
CultivarNameStart<-20;
CultivarNameEnd<-nchar(BatchFile[CropNameAddress]); #Get the Cultivar name such as, "ZA0002 Prisma GC Avg";
CultivarID<-substr(BatchFile[CropNameAddress], CultivarIDStart, CultivarIDEnd);
CultivarName<-substr(BatchFile[CropNameAddress], CultivarNameStart, CultivarNameEnd);
write(c("Cultivar ID =",CultivarName), file = ModelRunIndicatorPath, ncolumns=2, append = T);
CTR_file_GLUE <- readLines(paste0(WD,"DSSCTR.template"))
#Check if there is already a DSCSM048.CTR inside the folder and save it.
#ECTR <- file.exists(paste0(DSSATD,"/DSCSM048.CTR"))
#if (ECTR == TRUE){
# CTR_file_Original <- readLines(paste0(DSSATD,"/DSCSM048.CTR"))
#}
#Copy the template for applying the modifications
CTR <- CTR_file_GLUE
LineNo <- grep("GLUEModel", CTR)
LineSplit = unlist(strsplit(CTR[LineNo]," "))
LineSplit[length(LineSplit)] <- gsub("\\d+", "",ModelID)
CTR[LineNo] <- paste(LineSplit, collapse=' ')
#writeLines(CTR,paste0(DSSATD,"/DSCSM048.CTR"))
ModelSelect <- ModelID
write(c("Model Name =",ModelSelect), file = ModelRunIndicatorPath, ncolumns=2, append = T);
# Check is model is in the exclusion list
eval(parse(text=paste("excludedFile<-readLines('",glueExcludedModelListFile,"',n=-1)",sep = '')));
excludedFile.df <- read.table(textConnection(excludedFile[-c(1,2)]),header=F, sep=",")
colnames(excludedFile.df) <- unlist(strsplit(sub("@", "", excludedFile[2]), split = ","))
if (CropName %in% excludedFile.df[which(substr(ModelSelect,1,5) == excludedFile.df[,"MODEL"]),][,"CROP"]) {
#errorMsg <- paste0("Currently model ", ModelSelect, " for ", CropName, " is not supported by GLUE, please modify the DSSATPRO.L48 file to change to other model for crop ", CropName, ".")
errorMsg <- paste0("Currently model ", ModelSelect, " for ", CropName, " is not supported by GLUE, please select a different model for crop ", CropName, ".")
write(errorMsg, file = glueWarningLogFile, ncolumns=1, append = T);
# stop(errorMsg)
quit()
}
# Get the genotype file name
GenotypeFilePath<-GD;
CurrentGenotypeFile<-paste0(GD,CropName,substr(ModelSelect,3,8),".CUL")
#Get the names of the genotype file template that will be used, which shoud start with crop name such as "MZ",
#and end with extension name ".CUL". Since there are two genotype files starting with "MZ" and ending with
#".CUL" under the "Genotype" folder of DSSAT, it was set as "MZCER048.CUL" as default value.
StringLength<-nchar(CurrentGenotypeFile);
GenotypeFileNameStartPosition<-(StringLength-(8+4)+1);
GenotypeFileNameEndPosition<-StringLength-4;
#Where 4 is the length of character ".CUL",
#while 8 is the length of cultivar file name, such as "MZCER048".
GenotypeFileName<-substr(CurrentGenotypeFile, GenotypeFileNameStartPosition, GenotypeFileNameEndPosition);
write(c("Genotype file name =",GenotypeFileName), file = ModelRunIndicatorPath, ncolumns=2, append = T);
#Get the name of the genotype file used currently.
## (6) Set up batch file.
##Only copy the information below @FILEX in the genotype file generated by GenSelect, such as "APPOLO.MZC",
##to the batch file template "DSSBatch.template". Thus a new batch file can be generated and save it as
##"DSSBatch.v48" in the output directory.
eval(parse(text=paste("source('",WD,"BatchFileSetUp.r')",sep = '')));
BatchFileSetUp(WD, OD, CultivarBatchFile);
write(c("DSSAT batch file =",CultivarBatchFile), file = ModelRunIndicatorPath, ncolumns=2, append = T);
## (7) Get the parameter property file (miminum, maximum, and flg values) and the number of parameters.
CulFile.origin= readLines(paste0(GD,GenotypeFileName,".CUL"))#, encoding="UTF-8")
if(length(grep("999991 MINIMA", CulFile.origin)) == 0){
errorMsg <- "Lower bound (MINIMA) not specified in the cultivar file. Please correct the file."
return(NULL)
}
if(length(grep("999992 MAXIMA", CulFile.origin)) == 0){
errorMsg <- "Upper bound (MAXIMA) not specified in the cultivar file. Please correct the file."
return(NULL)
}
if(length(grep("!Calibration", CulFile.origin)) == 0){
errorMsg <- "Missing the calibration switches (P/G/N) in the cultivar file. Please correct the file."
return(NULL)
}
caliLine = CulFile.origin[which(substr(CulFile.origin,1,12) == "!Calibration")]
CulFile = CulFile.origin[-which(substr(CulFile.origin,1,1) == "!")] #ignore lines starting with !
CulFile = c(CulFile,caliLine)
#locate parameter properties
LineNo.title = grep("@VAR#",CulFile)[1]
LineNo.min = grep("999991 MINIMA",CulFile)
LineNo.max = grep("999992 MAXIMA",CulFile)
LineNo.cal = grep("!Calibration",CulFile)
Lineno.thiscul = grep(paste0("^",CultivarID),CulFile)
LineNo.all = c(LineNo.cal[1],LineNo.title,LineNo.min,LineNo.max,Lineno.thiscul)
if(length(LineNo.cal)>1){
LineNo.cal = grep("!Calibration",CulFile)[1]
warning("Please use the first !Calibration line to define the calibration switch!")
}
CulFile = CulFile[LineNo.all]
write(c("Parameter property:",CulFile ), file = ModelRunIndicatorPath, append = T);
# convert text to dataframe
CulFile.df = paste0(substr(CulFile,1,6), substr(CulFile,30,nchar(CulFile)[1]))
Cul.Header = unlist(strsplit(CulFile.df[2],split="(\\s|\\|)+"))
Cul.Header = Cul.Header[which(nchar(Cul.Header)>0)]
CulData = read.table(textConnection(CulFile.df[-c(1,2)]),header=F)
Cul.Header = Cul.Header[1:length(colnames(CulData))]
colnames(CulData) = Cul.Header
Cul.Cali = unlist(strsplit(CulFile[1],"\\s+"))
Cul.Cali.reshape = paste(c(Cul.Cali[1],"placeholder", Cul.Cali[2:length(Cul.Cali)]), sep=" ", collapse = " ")
Cul.Cali.df = read.table(textConnection(Cul.Cali.reshape),header = F)
colnames(Cul.Cali.df) = Cul.Header
Cul.Cali.df = Cul.Cali.df[1:length(Cul.Header)]
CulData = rbind(CulData,Cul.Cali.df)
ncol.predefined = which(Cul.Header=="ECO#")
Cul.TotalParameterNumber = ncol(CulData) - ncol.predefined #Get the total number of the parameters.
Cul.ParameterNames = Cul.Header[-c(1:ncol.predefined)]
write(c("Cultivar File Parameters =",Cul.ParameterNames), file = ModelRunIndicatorPath, append = T)
if(EcotypeCalibration == "Y"){
EcotypeID <- CulData$`ECO#`[3]
Eco.File.origin= readLines(paste0(GD,GenotypeFileName,".ECO"))#, encoding="UTF-8")
if(length(grep("999991 MINIMA", Eco.File.origin)) == 0){
errorMsg <- "Lower bound (MINIMA) not specified in the ecotype file. Please correct the file."
return(NULL)
}
if(length(grep("999992 MAXIMA", Eco.File.origin)) == 0){
errorMsg <- "Upper bound (MAXIMA) not specified in the ecotype file. Please correct the file."
return(NULL)
}
if(length(grep("!Calibration", Eco.File.origin)) == 0){
errorMsg <- "Missing the calibration switches (P/G/N) in the ecotype file. Please correct the file."
return(NULL)
}
Eco.CaliLine = Eco.File.origin[which(substr(Eco.File.origin,1,12) == "!Calibration")]
EcoFile = Eco.File.origin[-which(substr(Eco.File.origin,1,1) == "!")] #ignore lines starting with !
EcoFile = c(EcoFile,Eco.CaliLine)
if(length(Eco.CaliLine) == 0){
errorMsg <- "Check Ecotype (.ECO) file format; Missing phenology and growth indicators for calibration"
write(errorMsg, file = glueWarningLogFile, append = T)
print(errorMsg)
}
#locate parameter properties
Eco.LineNo.title = grep("@ECO#",EcoFile)[1]
Eco.LineNo.min = grep("999991 MINIMA",EcoFile)
Eco.LineNo.max = grep("999992 MAXIMA",EcoFile)
Eco.LineNo.cal = grep("!Calibration",EcoFile)
Eco.Lineno.thiseco = grep(paste0("^",EcotypeID),EcoFile)
Eco.LineNo.all = c(Eco.LineNo.cal[1],Eco.LineNo.title,Eco.LineNo.min,Eco.LineNo.max,Eco.Lineno.thiseco)
if(length(Eco.LineNo.cal)>1){
Eco.LineNo.cal = grep("!Calibration",EcoFile)[1]
warning("Ecotype File - Please use the first !Calibration line to define the calibration switch!")
}
EcoFile = EcoFile[Eco.LineNo.all]
write(c("Ecotype Parameter property:",EcoFile ), file = ModelRunIndicatorPath, append = T);
# convert text to dataframe
EcoFile.df = paste0(substr(EcoFile,1,6), substr(EcoFile,24,nchar(EcoFile)[1]))
Eco.Header = unlist(strsplit(EcoFile.df[2],split="(\\s|\\|)+"))
Eco.Header = Eco.Header[which(nchar(Eco.Header)>0)]
EcoData = read.table(textConnection(EcoFile.df[-c(1,2)]),header=F)
Eco.Header = Eco.Header[1:length(colnames(EcoData))]
colnames(EcoData) = Eco.Header
Eco.Cali = unlist(strsplit(EcoFile[1],"\\s+"))
Eco.Cali.reshape = paste(c(Eco.Cali[1], Eco.Cali[2:length(Eco.Cali)]), sep=" ", collapse = " ")
Eco.Cali.df = read.table(textConnection(Eco.Cali.reshape),header = F)
colnames(Eco.Cali.df) = Eco.Header
Eco.Cali.df = Eco.Cali.df[1:length(Eco.Header)]
EcoData = rbind(EcoData,Eco.Cali.df)
Eco.ncol.predefined = which(Eco.Header=="@ECO#")
Eco.TotalParameterNumber = ncol(EcoData) - Eco.ncol.predefined #Get the total number of the parameters.
Eco.ParameterNames = Eco.Header[-c(1:Eco.ncol.predefined)]
write(c("Ecotype File Parameters =",Eco.ParameterNames), file = ModelRunIndicatorPath, append = T)
#new row to identify the origin of each parameter
CulData[nrow(CulData)+1,] <- "Cultivar"
EcoData[nrow(EcoData)+1,] <- "Ecotype"
DataColumns <- cbind(CulData, EcoData[-1]) #remove Ecotype first line and merge
TotalParameterNumber <- Cul.TotalParameterNumber + Eco.TotalParameterNumber
ParameterNames <- c(Cul.ParameterNames, Eco.ParameterNames)
EcotypeID <- EcotypeID
EcotypeParameters <- Eco.TotalParameterNumber #stores ID and number of parameters
}else{
EcotypeID <- NA
EcotypeParameters <- 0
DataColumns <- CulData
TotalParameterNumber <- Cul.TotalParameterNumber
ParameterNames <- Cul.ParameterNames
}
#################Step 2: Begin the GLUE procedure.#################
for (i in StartRoundOfGLUE:TotalRoundOfGLUE)
{
RoundOfGLUE<-i;
## (1) Generate random values for the paramter set concerned.
eval(parse(text = paste("source('",WD,"RandomGeneration.r')",sep = '')));
RandomMatrix<-RandomGeneration(WD,DataColumns, TotalParameterNumber, ncol.predefined,NumberOfModelRun, RoundOfGLUE, GLUEFlag);
write(paste0("GLUE Flag: ", RoundOfGLUE), file = ModelRunIndicatorPath, append = T);
write("Random parameter sets have been generated...", file = ModelRunIndicatorPath, append = T);
write("Model runs are starting...", file = ModelRunIndicatorPath, append = T);
calib_var <- "empty"
if(RoundOfGLUE == 1){
calib_var <- "Phenology"
}else{
calib_var <- "Growth"
}
print(paste0("GLUE Flag: ", calib_var));
print(paste0("Model runs are starting..."));
## (2) Create new genotype files with the generated parameter sets and run the DSSAT model with them.
eval(parse(text = paste("source('",WD,"ModelRun.r')",sep = '')));
ModelRun(WD, OD, DSSATD, GD, CropName, GenotypeFileName, CultivarID, RoundOfGLUE, TotalParameterNumber,
NumberOfModelRun, RandomMatrix, Cores, EcotypeID, EcotypeParameters, ModelSelect, CTR);
print(paste0("GLUE has finished calibrating the ", calib_var," parameters ... Time: ",Sys.time()-time_test))
print(paste0("Initializing evaluation for ", calib_var," parameters ... Time: ",Sys.time()-time_test))
#List every EvaluateFrame file in the output folder
listEvalFrame <- dir(gsub("/$", "", OD), recursive=TRUE, full.names=TRUE, pattern=paste0("EvaluateFrame_",RoundOfGLUE,".txt"));
#Select only EvaluateFrame files in "core..." folders to avoid mixing with results from previous runs contained inside the BackUp folder
EvaluateFiles <- listEvalFrame[grepl(paste0(OD,"core"), listEvalFrame)]
#List every Evaluate_output.txt in the output folder
listEvaluateOut <- dir(gsub("/$", "", OD), recursive=TRUE, full.names=TRUE, pattern=paste0("Evaluate_output.txt"));
#Select only Evaluate_output.txt files in "core..." folders to avoid mixing with results from previous runs contained inside the BackUp folder
EvaluateOutTxt <- listEvaluateOut[grepl(paste0(OD,"core"), listEvaluateOut)]
#List every RealRandomSets file in the output folder
listRealRandomSets <- dir(gsub("/$", "", OD), recursive=TRUE, full.names=TRUE, pattern=paste0("RealRandomSets_",RoundOfGLUE,".txt"));
#Select only RealRandomSets files in "core..." folders to avoid mixing with results from previous runs contained inside the BackUp folder
RealRandomSetsFiles <- listRealRandomSets[grepl(paste0(OD,"core"), listRealRandomSets)]
#List every Error_list file in the output folder
listErrorFrame <- dir(gsub("/$", "", OD), recursive=TRUE, full.names=TRUE, pattern=paste0("Error_list_*"));
#Select only Error_list files in "core..." folders to avoid mixing with results from previous runs contained inside the BackUp folder
ErrorFiles <- listErrorFrame[grepl(paste0(OD,"core"), listErrorFrame)]
EvaluateFrameData <- c();
RealRandomSetsFrame <- c();
ErrorFrame <- c();
#Merge the simulation results from each core
for(Eval_out in EvaluateFiles){
eval(parse(text=paste("FileE<-readLines('",Eval_out,"',n=-1)",sep = '')));
FileLength<-length(FileE);
TitleLine = grep("@RUN",FileE);
#print(TitleLine)
if(Eval_out==EvaluateFiles[1]){
EvaluateFrameTitle<-FileE[TitleLine]
file.copy(EvaluateOutTxt[1], OD) #doing this just because IntegratedLikelihoodCalculation scripts check the header
}
File_no_title <- FileE[-TitleLine]; #remove title
EvaluateFrameData=append(EvaluateFrameData,File_no_title);
}
EvaluateFrame<-append(EvaluateFrameTitle, EvaluateFrameData);
eval(parse(text = paste('write(EvaluateFrame, "',OD,'/EvaluateFrame_',RoundOfGLUE,'.txt", append = T)',sep="")))
for (Rand_out in RealRandomSetsFiles){
eval(parse(text=paste("FileRand<-readLines('",Rand_out,"',n=-1)",sep = '')));
RealRandomSetsFrame=append(RealRandomSetsFrame,FileRand);
}
eval(parse(text = paste('write(RealRandomSetsFrame, "',OD,'/RealRandomSets_',RoundOfGLUE,'.txt", append = T)',sep="")))
if(length(ErrorFiles) > 0){
for (Error_out in ErrorFiles){
eval(parse(text=paste("FileError<-suppressWarnings({readLines('",Error_out,"',n=-1)})",sep = '')));
ErrorFrame=append(ErrorFrame,FileError);
}
eval(parse(text = paste('write(ErrorFrame, "',OD,'/ErrorFrame.txt", append = T)',sep="")))
}
write("Likelihood calculation is starting...", file = ModelRunIndicatorPath, append = T);
## (3) Calculate the likelihood values for each parameter set.
eval(parse(text = paste("source('",WD,"/LikelihoodCalculation.r')",sep = '')));
LikelihoodCalculation(WD, OD, CropName, ParameterNames, RoundOfGLUE);
write("Likelihood calculation is finished...", file = ModelRunIndicatorPath, append = T);
write("Starting calculation of posterior distribution...", file = ModelRunIndicatorPath, append = T);
## (4) Derivation of posterior distribution.
eval(parse(text = paste("source('",WD,"/PosteriorDistribution.r')",sep = '')));
PosteriorDistribution(WD, OD, ParameterNames, ParameterProperty, CropName, RoundOfGLUE);
write("Posterior distribution is derived...", file = ModelRunIndicatorPath, append = T);
## (5) Indicator of model running to show the round of GLUE is finished.
if (RoundOfGLUE==1)
{
Indicator<-'The first round of GLUE is finished.';
write(Indicator, file = ModelRunIndicatorPath, append = T);
} else
{
Indicator<-'The second round of GLUE is finished.';
write(Indicator, file = ModelRunIndicatorPath, append = T);
}
print(paste0("Finalizing evaluation for ", calib_var," parameters ... Time: ",Sys.time()-time_test))
}
#################Step 3: Get a final optimal parameter set.##############
eval(parse(text = paste("source('",WD,"/OptimalParameterSet.r')",sep = '')));
OptimalParameterSet(GLUEFlag, OD, DSSATD, CropName, CultivarID, CultivarName, GenotypeFileName, TotalParameterNumber, EcotypeID, EcotypeParameters);
options(show.error.message=T)
#If a DSCSM048.CTR previously existed in the dir, GLUE will put the original back in the folder.
#Otherwise, it will only delete the DSCSM048.CTR that was created for the calibration.
#if(ECTR == TRUE){
# writeLines(CTR_file_Original,paste0(DSSATD,"/DSCSM048.CTR"));
#}else{
# file.remove(paste0(DSSATD,"/DSCSM048.CTR"));
#}
print(Sys.time()-time_test)
print(paste0("Calibration ended at ", Sys.time()))
#print("Cleaning the work directory.")
#unlink(list.files(OD, pattern='core_*', full.names = TRUE),recursive = TRUE)
},error = function(e) {
fail_run<- paste0("\nAn error occurred during the calibration.\n")
if(exists("errorMsg") == TRUE){
fail_run <- paste0(fail_run, errorMsg,"\n")
}
#Appending R error msg for debugging
#fail_run<- paste0(fail_run, "\n***\nR error message:\n", e)
write(fail_run, file = glueWarningLogFile, append = T)
message(paste0(fail_run, e,"\n"))
#if(OD != WD){
# if(ECTR == TRUE){
# writeLines(CTR_file_Original,paste0(DSSATD,"/DSCSM048.CTR"));
# }else{
# file.remove(paste0(DSSATD,"/DSCSM048.CTR"));
# }
#}
}
)