-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6_20-plot-basics.qmd
606 lines (426 loc) · 16.4 KB
/
6_20-plot-basics.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
```{r, echo=F }
knitr::opts_chunk$set( echo = TRUE, message=F, warning=F, fig.width=10)
```
```{r, echo=F}
library( dplyr )
library( pander )
```
# The plot() Function
<div class="tip">
## Key Concepts
We can create highly-customized scatterplots by mastering a few arguments:
* xlim, ylim - min and max values for the x and y plot range displayed
* frame.plot - change to FALSE to suppress a box drawn around the plot
* col - the colors of the plotting points
* type - the style of plot: points, lines, or both
* pch - the shape of the plotting points
* cex - the size of the plotting points
* main - the title of the plot
* xlab, ylab - axes labels
* cex.lab - the size of axes labels
These are some of the most useful arguments for the plot() function, but only a small sample of settings that you can change.
Try **help( "par" )** for a more extensive list.
<br>
<br>
<br>
<br>
</div>
<br>
<br>
Mastering a few arguments in the **plot()** function allows for a lot of customization.
```{r, eval=F}
plot(
x=fertilizer, # data, if x is omitted then uses 1:length(y)
y=corn.height,
xlim=c(0,100), # min and max value of axes
ylim=c(200,350),
frame.plot=FALSE, # draw a box around the data?
col="steel blue", # color of the points
type="b", # points="p", lines="l", both="b", or none="n"
pch=19, # shape of points to plot
cex=2, # size of points
main="Plot Title", # title of your plot
xlab="Label for X", # axes labels
ylab="Label for Y",
cex.lab=1.5 # aspect ratio for axes labels
)
```
```{r, echo=F}
source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
plot(
x=fertilizer, # data, if x is omitted then uses 1:length(y)
y=corn.height,
xlim=c(-10,110), # min and max value of axes
ylim=c(200,350),
frame.plot=FALSE, # draw a box around the data?
col="steel blue", # color of the points
type="b", # points="p", lines="l", both="b", or none="n"
pch=19, # shape of points to plot
cex=2, # size of points
main="Plot Title", # title of your plot
col.main="darkorange",
cex.main=1.5,
xlab="Label for X", # axes labels
ylab="Label for Y",
cex.lab=1.5, # aspect ratio for axes labels
col.lab="firebrick"
)
title( xlab="<-- xlim=c(0,100) -->",
line=-1.5, cex.lab=1, col.lab="gray20", family="mono" )
title( ylab="<-- ylim=c(200,350) --> ",
line=-1.5, cex.lab=1, col.lab="gray20", adj=1, family="mono" )
text( 85, 345, "pch = 19", col="steelblue", cex=0.9, pos=4 )
text( 85, 335, "type = 'b'", col="steelblue", cex=0.9, pos=4 )
text( 85, 325, "cex = 2", col="steelblue", cex=0.9, pos=4 )
text( 85, 315, "col = 'steelblue'", col="steelblue", cex=0.9, pos=4 )
title( main="( col.main = 'darkorange' ) ",
adj=1, col.main="darkorange", cex.main=1 )
title( xlab="( col.lab = 'firebrick' ) ",
adj=1, col.lab="firebrick", cex.main=0.8 )
```
## plot() Arguments
This lecture is a brief introduction to the plot() function in R, the work horse of the graphics package. We will introduce the flexibility of the fully-customizable graphics engine in R through the demonstration of some useful arguments.
To demonstrate these arguments we will use a simple dataset from a hypothetical farming experiment that examines the relationship between levels of new fertilizer under development and the height of the corn. To identify the optimal dosage of fertilizer to use, the experiment applies different levels to separate fields of corn, then measures the average final corn height at each dosage. The fields are scattered across three farms, and "moisture" represents the average Volumetric Water Content of the soil in each field.
You can load it as follows:
```{r}
source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
```
```{r, echo=F}
# source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
fertilizer <- sample( 1:100, 100 )
corn.height <- 250 + 2*fertilizer + 20*rnorm(100) - 0.02*fertilizer^2
moisture <- abs( rnorm(100,50,25) / 100 )
farm <- factor( sample( c("A","B","C"), 100, replace=T ) )
dat <- data.frame( fertilizer,
corn.height=round(corn.height,0),
moisture=round(moisture,2),
farm )
head( dat, 10 ) %>% pander()
```
```{r, echo=F}
source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
dat <- data.frame( fertilizer,
corn.height=round(corn.height,0),
moisture=round(moisture,2),
farm )
```
<br>
<br>
<div class="question">
Change plot() arguments to see how they impact the graph.
In your R console type `colors()` to get a list of color names that R will recognize, or type `demo("colors")` to get a tour of some options.
</div>
```{r, include=FALSE}
tutorial::go_interactive( greedy=FALSE)
```
```{r ex="ex-01", type="pre-exercise-code", tut=TRUE}
source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
```
```{r ex="ex-01", type="sample-code", tut=TRUE, height=400 }
plot(
x=fertilizer, # input data
y=corn.height,
xlim=c(0,100), # min and max value of axes
ylim=c(200,350),
frame.plot=FALSE, # draw a box around the data?
col="steel blue", # color of the points
type="b", # "p", "l", or "b"
pch=19, # shape of points to plot
cex=2, # size of points
main="Plot Title", # title of your plot
xlab="Label for X", # axes labels
ylab="Label for Y",
cex.lab=1.5 # aspect ratio for axes labels
)
```
## The Default Scatterplot
The default **plot()** function requires an x-variable and y-variable and will create a scatterplot, adding axes and a title:
```{r}
plot( x=fertilizer, y=corn.height )
```
Ok, so let's improve upon this a bit. You can use the following arguments to customize the plot:
## Titles
We can add better labels and a title with **xlab=**, **ylab=**, and **main=**.
```{r}
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth"
)
```
We can also change their size with **cex.lab=** to control the size of the axes labels, and **cex.main=** to control the size of the title.
Note that all of the **cex** arguments are aspect ratios, meaning that the default value of 1 represents 100% and all other argument values are in relation to this default. A value of 2 means to increase the title to 200% of the size, an argument of 0.5 shrinks the title to half the original size.
```{r, eval=F}
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="cex.lab=2",
cex.lab=2, # double the size of the axis labels
col.lab="steelblue" # change color of axis labels
)
```
```{r, fig.width=5, echo=F}
par( mar=c(5,5,5,2), bty="n" ) # set the margins
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="default cex.lab",
col.lab="steelblue", las=1,
cex.main=1.5
)
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="cex.lab=0.5", cex.main=1.5,
col.lab="steelblue", las=1,
cex.lab=0.5
)
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="cex.lab=2", cex.main=1.5,
col.lab="steelblue", las=1,
cex.lab=2
)
```
## Type of Plot
We can plot points, lines, or some combination of lines and points using the **type=** argument:
* "l" for lines
* "p" for points
* "b" for both points and lines
* "o" plots lines over points
* "n" for no lines or points
```{r, eval=F}
plot(
x=fertilizer, y=corn.height,
type="p",
main='type="p"',
cex.main=2,
xlab="",
ylab="",
col.axis="gray60",
frame.plot=F
)
```
```{r, echo=F, fig.width=10}
source( "https://raw.githubusercontent.com/DS4PS/Data-Science-Class/master/DATA/corn_stalks.R" )
par( mfrow=c(2,2), mar=c(2,2,5,2) )
plot(
x=fertilizer, y=corn.height,
xlab="",
ylab="",
main='type="p"',
type="p", bty="n", col.axis="gray60",
cex.main=2
)
plot(
x=fertilizer, y=corn.height,
xlab="",
ylab="",
main='type="l"',
type="l", bty="n", col.axis="gray60",
cex.main=2
)
plot(
x=fertilizer, y=corn.height,
xlab="",
ylab="",
main='type="b"',
type="b", bty="n", col.axis="gray60",
cex.main=2
)
plot(
x=fertilizer, y=corn.height,
xlab="",
ylab="",
main='type="o"',
type="o", bty="n", col.axis="gray60",
cex.main=2
)
```
## Shape of Points
The argument **pch** determines the shape of the plot points. The numeric values 0 to 25 represent different default shapes. We can also use any number, letter, or symbol as a plotting shape.
```{r, echo=F}
pchShow <-
function(extras = c("*",".", "o","O","0","+","-","|","%","#"),
cex = 3, ## good for both .Device=="postscript" and "x11"
col = "darkgray", bg = "gold", coltext = "black", cextext = 1.2,
main = paste("plot symbols : points (... pch = *, cex =",
cex,")"))
{
nex <- length(extras)
np <- 26 + nex
ipch <- 0:(np-1)
k <- floor(sqrt(np))
dd <- c(-1,1)/2
rx <- dd + range(ix <- ipch %/% k)
ry <- dd + range(iy <- 3 + (k-1)- ipch %% k)
pch <- as.list(ipch) # list with integers & strings
if(nex > 0) pch[26+ 1:nex] <- as.list(extras)
plot(rx, ry, type = "n", axes = FALSE, xlab = "", ylab = "", main = main)
abline(v = ix, h = iy, col = "lightgray", lty = "dotted")
for(i in 1:np) {
pc <- pch[[i]]
## 'col' symbols with a 'bg'-colored interior (where available) :
points(ix[i], iy[i], pch = pc, col = col, bg = bg, cex = cex)
if(cextext > 0)
text(ix[i] - 0.3, iy[i], pc, col = coltext, cex = cextext)
}
}
pchShow()
```
Note that shapes 0 to 14 are hollow, 15 to 20 are solid, and 21 to 25 can also plot a background color specified by the **bg=** argument.
```{r}
plot(
x=fertilizer, y=corn.height,
frame.plot=FALSE,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="pch=23", cex.main=1.5,
pch=23, col="red", bg="green"
)
```
## Size of Points
We change the size of points using the **cex=** argument (pronounced "chex"). Similar to the title cex, it is an aspect ratio so cex=2 increases the size of the plotting points to 200% of the original, and cex=0.5 scales the size down to half of the original size.
```{r, eval=F}
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2",
pch=19,
cex=2, # scale points to 200% normal size
xlab="", ylab="", las=1,
main="cex=2", cex.main=2,
frame.plot=FALSE
)
```
```{r, fig.width=5, echo=F }
# par( mar=c(4,2,5,2), mfrow=c(3,1) ) # layout
par( mar=c(4,3,5,2) ) # margins
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2", pch=19, frame=FALSE,
xlab="", ylab="", main="cex=1 (default)",
cex.main=2, las=1
)
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2", pch=19, frame=FALSE,
xlab="", ylab="",main="cex=0.5", cex.main=2,
cex=0.5, las=1
)
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2", pch=19, frame=FALSE,
xlab="", ylab="", main="cex=2", cex.main=2,
cex=2, las=1
)
```
The **cex=** argument is also useful for incorporating a third numeric variable into the analysis. For example, perhaps we want to include the average moisture levels of the soil for each field. When we use a numeric vector like this with the **cex=** argument, instead of a single constant, the plot will adjust the size of observation based upon its measured moisture level. Since moisture values are between 0 and 1, I have scaled them by 3 to ensure the points are large enough to see.
```{r}
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2",
cex=3*moisture,
pch=19, frame.plot=F,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth"
)
```
## Colors
The argument **col=** determines the color of plot points. To see a list of preset options check out:
[List of default named colors in R](http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf)
```{r}
plot(
x=fertilizer, y=corn.height,
col="darkgoldenrod2", pch=19, cex=2,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth",
frame.plot=FALSE
)
```
In the example above we specified a single color for all of our corn heights. If we want to incorporate a third categorical variable in our analysis, we can use a factor in our dataset as the value we pass to the **col=** argument. For example, perhaps we want to indicate which farm each field belongs to in the graph.
```{r}
plot(
x=fertilizer, y=corn.height,
pch=19, cex=2,
col=farm,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth",
frame.plot=FALSE
)
```
Note that "farms" has to be a factor in order to use it in the **col=** argument. In this example, the farms have labels of "A" to "C".
```{r}
levels( farm )
```
You might be curious how R selected the colors for the three farms. The **palette()** function will print the default values that R uses for categorical variables:
```{r}
palette()
```
You can see that the first three are the colors used in the graph above. Since there are only 8 default values, if your categorical variable has more than 8 levels it will start to recycle colors.
Perhaps you don't like the default values. You can select your own by passing color names to the **palette()** function as follows:
```{r}
palette( c("forestgreen","darkorange1","darkorchid") )
plot(
x=fertilizer, y=corn.height,
pch=18, cex=3,
col=farm,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth",
frame.plot=FALSE
)
```
## Looking Ahead
In the next section, we will add some lines, points, and text to the plot.
We can add lines to highlight trends (a regression is just the average of Y at each level of X).
```{r}
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
main="Relationship Between Fertilizer Intensity and Corn Growth",
pch=19,
col="gray",
cex=2,
bty="n"
)
lines( lowess( fertilizer, corn.height ), col="darkgoldenrod2", lwd=4 )
```
In order to add narrative to your graphs, you can add points and text.
The **points()** function operates with basically the same parameters as the **plot()** function. The **text()** function uses the same X and Y coordinates, but you also have to add an argument for the text that you want added to the plot.
Let's highlight the tallest corn stalk as an example.
```{r, eval=F}
tallest.x <- fertilizer[ which.max( corn.height ) ]
tallest.y <- corn.height[ which.max( corn.height ) ]
points( x=tallest.x, y=tallest.y, cex=3, lwd=1.5, col="firebrick4" )
text( x=tallest.x, y=tallest.y,
labels="Tallest Stalk",
pos=3, offset=1, col="firebrick4" )
```
```{r, echo=F}
plot(
x=fertilizer, y=corn.height,
xlab="Fertilizer (mg)",
ylab="Corn Height (cm)",
ylim=c(200,400),
main="Relationship Between Fertilizer Intensity and Corn Growth",
pch=19,
col="gray",
cex=2,
bty="n"
)
lines( lowess( fertilizer, corn.height ), col="darkgoldenrod2", lwd=4 )
tallest.x <- fertilizer[ which.max( corn.height ) ]
tallest.y <- corn.height[ which.max( corn.height ) ]
points( x=tallest.x, y=tallest.y, cex=3, lwd=1.5, col="firebrick4" )
text( x=tallest.x, y=tallest.y, labels="Tallest Stalk", pos=3, offset=1, col="firebrick4" )
```