-
Notifications
You must be signed in to change notification settings - Fork 14
/
cf_utils.py
247 lines (228 loc) · 9.16 KB
/
cf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import copy
import pickle
from multiprocessing import Pool
from itertools import combinations
import torch
import torch.nn.functional as F
import numpy as np
from sklearn.preprocessing import normalize
import scipy.sparse as sp
from scipy.spatial.distance import cdist
from scipy.sparse.csgraph import dijkstra
from scipy.sparse.linalg import inv, eigs
import networkx as nx
from sknetwork.embedding import Spectral
from sknetwork.utils import membership_matrix
from sknetwork.hierarchy import Ward, cut_straight
from sknetwork.clustering import Louvain, KMeans, PropagationClustering
from geomloss import SamplesLoss
import pysbm
def load_t_files(args, T_file, logger, adj_train):
# raw node embeddings for nearest neighbor finding: numpy.ndarray
node_embs_raw = pickle.load(open(f'{args.datapath}{args.dataset}_embs-raw{args.embraw}.pkl', 'rb'))
# print('cf distance threshold: ', np.percentile(cdist(node_embs_raw, node_embs_raw, 'euclidean'), args.gamma))
if os.path.exists(T_file):
T_f, T_cf, adj_cf, edges_cf_t0, edges_cf_t1 = pickle.load(open(T_file, 'rb'))
logger.info(f'loaded cached T files: {args.t} {args.k}')
else:
T_f = get_t(adj_train, args.t, args.k, args.selfloopT)
T_cf, adj_cf, edges_cf_t0, edges_cf_t1 = get_CF(adj_train, node_embs_raw, T_f, args.dist, args.gamma, args.n_workers)
T_cf = sp.csr_matrix(T_cf)
adj_cf = sp.csr_matrix(adj_cf)
pickle.dump((T_f, T_cf, adj_cf, edges_cf_t0, edges_cf_t1), open(T_file, 'wb'))
logger.info(f'calculated and cached T files: {args.t} {args.k}')
return T_f, edges_cf_t1, edges_cf_t0, T_cf, adj_cf
def get_t(adj_mat, method, k, selfloop=False):
adj = copy.deepcopy(adj_mat)
if not selfloop:
adj.setdiag(0)
adj.eliminate_zeros()
if method == 'anchor_nodes':
T = anchor_nodes(adj, k)
elif method == 'common_neighbors':
T = common_neighbors(adj, k)
elif method == 'louvain':
T = louvain(adj)
elif method == 'spectral_clustering':
T = spectral_clustering(adj, k)
elif method == 'propagation':
T = propagation(adj)
elif method == 'kcore':
T = kcore(adj)
elif method == 'katz':
T = katz(adj, k)
elif method == 'hierarchy':
T = ward_hierarchy(adj, k)
elif method == 'jaccard':
T = jaccard_index(adj, k)
elif method == 'sbm':
T = SBM(adj, k)
return T
def SBM(adj, k):
nx_g = nx.from_scipy_sparse_matrix(adj)
standard_partition = pysbm.NxPartition(graph=nx_g, number_of_blocks=k)
rep = standard_partition.get_representation()
labels = np.asarray([v for k, v in sorted(rep.items(), key=lambda item: item[0])])
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def ward_hierarchy(adj, k):
ward = Ward()
dendrogram = ward.fit_transform(adj)
labels = cut_straight(dendrogram, k)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def jaccard_index(adj, k):
adj = adj.astype(int)
intrsct = adj.dot(adj.T)
row_sums = intrsct.diagonal()
unions = row_sums[:,None] + row_sums - intrsct
sim_matrix = intrsct / unions
thre = np.percentile(sim_matrix, (100-10*k))
thre = max(thre, np.percentile(sim_matrix, 0.5))
thre = min(thre, np.percentile(sim_matrix, 0.8))
T = np.asarray((sim_matrix >= thre).astype(int))
T = T - np.diag(T.diagonal())
return sp.csr_matrix(T)
def katz(adj, k):
max_eigvalue = eigs(adj.astype(float), k=1)[0][0]
beta = min(1/max_eigvalue/2, 0.003)
sim_matrix = inv(sp.identity(adj.shape[0]) - beta * adj) - sp.identity(adj.shape[0])
sim_matrix = sim_matrix.toarray()
size = sim_matrix.shape[0]
thre = 2 * k * sim_matrix.sum() / (size*size-1)
T = np.asarray((sim_matrix > thre).astype(int))
T = T - np.diag(T.diagonal())
return sp.csr_matrix(T)
def anchor_nodes(adj, k):
row_sum = np.asarray(adj.sum(axis = 1)).reshape(-1)
dist = dijkstra(csgraph=adj, indices=np.argmax(row_sum), directed=False, limit=k+1, return_predecessors=False)
res = dist < (k+1)
T = np.zeros(adj.shape)
T[res] += 1
T[:,res] += 1
T = (T > 1).astype(int)
return sp.csr_matrix(T)
def common_neighbors(adj, k):
mul_hop_adj = adj
for i in range(2):
mul_hop_adj += adj ** (i+2)
mul_hop_adj = (mul_hop_adj>0).astype(int)
T = (mul_hop_adj @ mul_hop_adj.T) >= k
T = T.astype(int)
return T
def louvain(adj):
louvain = Louvain()
labels = louvain.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def propagation(adj):
propagation = PropagationClustering()
labels = propagation.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def spectral_clustering(adj, k):
kmeans = KMeans(n_clusters = k, embedding_method=Spectral(256))
labels = kmeans.fit_transform(adj)
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def kcore(adj):
G = nx.from_scipy_sparse_matrix(adj)
G.remove_edges_from(nx.selfloop_edges(G))
labels = np.array(list(nx.algorithms.core.core_number(G).values()))-1
mem_mat = membership_matrix(labels)
T = (mem_mat @ mem_mat.T).astype(int)
return T
def sample_nodepairs(num_np, edges_f_t1, edges_f_t0, edges_cf_t1, edges_cf_t0):
# TODO: add sampling with separated treatments
nodepairs_f = np.concatenate((edges_f_t1, edges_f_t0), axis=0)
f_idx = np.random.choice(len(nodepairs_f), min(num_np,len(nodepairs_f)), replace=False)
np_f = nodepairs_f[f_idx]
nodepairs_cf = np.concatenate((edges_cf_t1, edges_cf_t0), axis=0)
cf_idx = np.random.choice(len(nodepairs_cf), min(num_np,len(nodepairs_f)), replace=False)
np_cf = nodepairs_cf[cf_idx]
return np_f, np_cf
def calc_disc(disc_func, z, nodepairs_f, nodepairs_cf):
X_f = torch.cat((z[nodepairs_f.T[0]], z[nodepairs_f.T[1]]), axis=1)
X_cf = torch.cat((z[nodepairs_cf.T[0]], z[nodepairs_cf.T[1]]), axis=1)
if disc_func == 'lin':
mean_f = X_f.mean(0)
mean_cf = X_cf.mean(0)
loss_disc = torch.sqrt(F.mse_loss(mean_f, mean_cf) + 1e-6)
elif disc_func == 'kl':
# TODO: kl divergence
pass
elif disc_func == 'w':
# Wasserstein distance
dist = SamplesLoss(loss="sinkhorn", p=2, blur=.05)
loss_disc = dist(X_cf, X_f)
else:
raise Exception('unsupported distance function for discrepancy loss')
return loss_disc
def get_CF(adj, node_embs, T_f, dist='euclidean', thresh=50, n_workers=20):
if dist == 'cosine':
# cosine similarity (flipped to use as a distance measure)
embs = normalize(node_embs, norm='l1', axis=1)
simi_mat = embs @ embs.T
simi_mat = 1 - simi_mat
elif dist == 'euclidean':
# Euclidean distance
simi_mat = cdist(node_embs, node_embs, 'euclidean')
thresh = np.percentile(simi_mat, thresh)
# give selfloop largest distance
np.fill_diagonal(simi_mat, np.max(simi_mat)+1)
# nearest neighbor nodes index for each node
node_nns = np.argsort(simi_mat, axis=1)
# find nearest CF node-pair for each node-pair
node_pairs = list(combinations(range(adj.shape[0]), 2))
print('This step may be slow, please adjust args.n_workers according to your machine')
pool = Pool(n_workers)
batches = np.array_split(node_pairs, n_workers)
results = pool.map(get_CF_single, [(adj, simi_mat, node_nns, T_f, thresh, np_batch, True) for np_batch in batches])
results = list(zip(*results))
T_cf = np.add.reduce(results[0])
adj_cf = np.add.reduce(results[1])
edges_cf_t0 = np.concatenate(results[2])
edges_cf_t1 = np.concatenate(results[3])
return T_cf, adj_cf, edges_cf_t0, edges_cf_t1,
def get_CF_single(params):
""" single process for getting CF edges """
adj, simi_mat, node_nns, T_f, thresh, node_pairs, verbose = params
T_cf = np.zeros(adj.shape)
adj_cf = np.zeros(adj.shape)
edges_cf_t0 = []
edges_cf_t1 = []
c = 0
for a, b in node_pairs:
# for each node pair (a,b), find the nearest node pair (c,d)
nns_a = node_nns[a]
nns_b = node_nns[b]
i, j = 0, 0
while i < len(nns_a)-1 and j < len(nns_b)-1:
if simi_mat[a, nns_a[i]] + simi_mat[b, nns_b[j]] > 2 * thresh:
T_cf[a, b] = T_f[a, b]
adj_cf[a, b] = adj[a, b]
break
if T_f[nns_a[i], nns_b[j]] != T_f[a, b]:
T_cf[a, b] = 1 - T_f[a, b] # T_f[nns_a[i], nns_b[j]] when treatment not binary
adj_cf[a, b] = adj[nns_a[i], nns_b[j]]
if T_cf[a, b] == 0:
edges_cf_t0.append([nns_a[i], nns_b[j]])
else:
edges_cf_t1.append([nns_a[i], nns_b[j]])
break
if simi_mat[a, nns_a[i+1]] < simi_mat[b, nns_b[j+1]]:
i += 1
else:
j += 1
c += 1
if verbose and c % 20000 == 0:
print(f'{c} / {len(node_pairs)} done')
edges_cf_t0 = np.asarray(edges_cf_t0)
edges_cf_t1 = np.asarray(edges_cf_t1)
return T_cf, adj_cf, edges_cf_t0, edges_cf_t1