forked from IreneLini94/tensorflow-resnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_processing.py
446 lines (365 loc) · 17.3 KB
/
image_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Read and preprocess image data.
Image processing occurs on a single image at a time. Image are read and
preprocessed in pararllel across mulitple threads. The resulting images
are concatenated together to form a single batch for training or evaluation.
-- Provide processed image data for a network:
inputs: Construct batches of evaluation examples of images.
distorted_inputs: Construct batches of training examples of images.
batch_inputs: Construct batches of training or evaluation examples of images.
-- Data processing:
parse_example_proto: Parses an Example proto containing a training example
of an image.
-- Image decoding:
decode_jpeg: Decode a JPEG encoded string into a 3-D float32 Tensor.
-- Image preprocessing:
image_preprocessing: Decode and preprocess one image for evaluation or training
distort_image: Distort one image for training a network.
eval_image: Prepare one image for evaluation.
distort_color: Distort the color in one image for training.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
"""Number of preprocessing threads per tower. """
"""Please make this a multiple of 4.""")
tf.app.flags.DEFINE_integer('num_readers', 4,
"""Number of parallel readers during train.""")
# Images are preprocessed asynchronously using multiple threads specifed by
# --num_preprocss_threads and the resulting processed images are stored in a
# random shuffling queue. The shuffling queue dequeues --batch_size images
# for processing on a given Inception tower. A larger shuffling queue guarantees
# better mixing across examples within a batch and results in slightly higher
# predictive performance in a trained model. Empirically,
# --input_queue_memory_factor=16 works well. A value of 16 implies a queue size
# of 1024*16 images. Assuming RGB 299x299 images, this implies a queue size of
# 16GB. If the machine is memory limited, then decrease this factor to
# decrease the CPU memory footprint, accordingly.
tf.app.flags.DEFINE_integer(
'input_queue_memory_factor', 16,
"""Size of the queue of preprocessed images. """
"""Default is ideal but try smaller values, e.g. """
"""4, 2 or 1, if host memory is constrained. See """
"""comments in code for more details.""")
def inputs(dataset, batch_size=None, num_preprocess_threads=None):
"""Generate batches of ImageNet images for evaluation.
Use this function as the inputs for evaluating a network.
Note that some (minimal) image preprocessing occurs during evaluation
including central cropping and resizing of the image to fit the network.
Args:
dataset: instance of Dataset class specifying the dataset.
batch_size: integer, number of examples in batch
num_preprocess_threads: integer, total number of preprocessing threads but
None defaults to FLAGS.num_preprocess_threads.
Returns:
images: Images. 4D tensor of size [batch_size, FLAGS.image_size,
image_size, 3].
labels: 1-D integer Tensor of [FLAGS.batch_size].
"""
if not batch_size:
batch_size = FLAGS.batch_size
# Force all input processing onto CPU in order to reserve the GPU for
# the forward inference and back-propagation.
with tf.device('/cpu:0'):
images, labels = batch_inputs(
dataset,
batch_size,
train=False,
num_preprocess_threads=num_preprocess_threads,
num_readers=1)
return images, labels
def decode_jpeg(image_buffer, scope=None):
"""Decode a JPEG string into one 3-D float image Tensor.
Args:
image_buffer: scalar string Tensor.
scope: Optional scope for name_scope.
Returns:
3-D float Tensor with values ranging from [0, 1).
"""
with tf.name_scope( scope, 'decode_jpeg'):
# Decode the string as an RGB JPEG.
# Note that the resulting image contains an unknown height and width
# that is set dynamically by decode_jpeg. In other words, the height
# and width of image is unknown at compile-time.
image = tf.image.decode_jpeg(image_buffer, channels=3)
# After this point, all image pixels reside in [0,1)
# until the very end, when they're rescaled to (-1, 1). The various
# adjust_* ops all require this range for dtype float.
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return image
def distort_color(image, thread_id=0, scope=None):
"""Distort the color of the image.
Each color distortion is non-commutative and thus ordering of the color ops
matters. Ideally we would randomly permute the ordering of the color ops.
Rather then adding that level of complication, we select a distinct ordering
of color ops for each preprocessing thread.
Args:
image: Tensor containing single image.
thread_id: preprocessing thread ID.
scope: Optional scope for name_scope.
Returns:
color-distorted image
"""
with tf.name_scope(scope, 'distort_color'):
color_ordering = thread_id % 2
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
elif color_ordering == 1:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
# The random_* ops do not necessarily clamp.
image = tf.clip_by_value(image, 0.0, 1.0)
return image
def distort_image(image, height, width, bbox, thread_id=0, scope=None):
"""Distort one image for training a network.
Distorting images provides a useful technique for augmenting the data
set during training in order to make the network invariant to aspects
of the image that do not effect the label.
Args:
image: 3-D float Tensor of image
height: integer
width: integer
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged
as [ymin, xmin, ymax, xmax].
thread_id: integer indicating the preprocessing thread.
scope: Optional scope for name_scope.
Returns:
3-D float Tensor of distorted image used for training.
"""
with tf.name_scope(scope, 'distort_image'):
# NOTE(ry) I unceremoniously removed all the bounding box code.
# Original here: https://github.com/tensorflow/models/blob/148a15fb043dacdd1595eb4c5267705fbd362c6a/inception/inception/image_processing.py
distorted_image = image
# This resizing operation may distort the images because the aspect
# ratio is not respected. We select a resize method in a round robin
# fashion based on the thread number.
# Note that ResizeMethod contains 4 enumerated resizing methods.
resize_method = thread_id % 4
distorted_image = tf.image.resize_images(distorted_image, size=(height,width), method=resize_method)
# Restore the shape since the dynamic slice based upon the bbox_size loses
# the third dimension.
distorted_image.set_shape([height, width, 3])
if not thread_id:
tf.summary.image('cropped_resized_image',
tf.expand_dims(distorted_image, 0))
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
# Randomly distort the colors.
distorted_image = distort_color(distorted_image, thread_id)
if not thread_id:
tf.summary.image('final_distorted_image',
tf.expand_dims(distorted_image, 0))
return distorted_image
def eval_image(image, height, width, scope=None):
"""Prepare one image for evaluation.
Args:
image: 3-D float Tensor
height: integer
width: integer
scope: Optional scope for name_scope.
Returns:
3-D float Tensor of prepared image.
"""
# with tf.name_scope([image, height, width], scope, 'eval_image'):
with tf.name_scope(scope, 'eval_image'):
# Crop the central region of the image with an area containing 87.5% of
# the original image.
image = tf.image.central_crop(image, central_fraction=0.875)
# Resize the image to the original height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [height, width],
align_corners=False)
image = tf.squeeze(image, [0])
return image
def image_preprocessing(image_buffer, bbox, train, thread_id=0):
"""Decode and preprocess one image for evaluation or training.
Args:
image_buffer: JPEG encoded string Tensor
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged as
[ymin, xmin, ymax, xmax].
train: boolean
thread_id: integer indicating preprocessing thread
Returns:
3-D float Tensor containing an appropriately scaled image
Raises:
ValueError: if user does not provide bounding box
"""
if bbox is None:
raise ValueError('Please supply a bounding box.')
image = decode_jpeg(image_buffer)
height = FLAGS.input_size
width = FLAGS.input_size
if train:
image = distort_image(image, height, width, bbox, thread_id)
else:
image = eval_image(image, height, width)
# Finally, rescale to [-1,1] instead of [0, 1)
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
def parse_example_proto(example_serialized):
"""Parses an Example proto containing a training example of an image.
The output of the build_image_data.py image preprocessing script is a dataset
containing serialized Example protocol buffers. Each Example proto contains
the following fields:
image/height: 462
image/width: 581
image/colorspace: 'RGB'
image/channels: 3
image/class/label: 615
image/class/synset: 'n03623198'
image/class/text: 'knee pad'
image/object/bbox/xmin: 0.1
image/object/bbox/xmax: 0.9
image/object/bbox/ymin: 0.2
image/object/bbox/ymax: 0.6
image/object/bbox/label: 615
image/format: 'JPEG'
image/filename: 'ILSVRC2012_val_00041207.JPEG'
image/encoded: <JPEG encoded string>
Args:
example_serialized: scalar Tensor tf.string containing a serialized
Example protocol buffer.
Returns:
filename: Tensor tf.string containing the filename
label: Tensor tf.int32 containing the label.
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged as
[ymin, xmin, ymax, xmax].
text: Tensor tf.string containing the human-readable label.
"""
# Dense features in Example proto.
feature_map = {
'image/filename': tf.FixedLenFeature(
[], dtype=tf.string, default_value=''),
'image/class/label': tf.FixedLenFeature(
[1], dtype=tf.int64, default_value=-1),
'image/class/text': tf.FixedLenFeature(
[], dtype=tf.string, default_value=''),
}
sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
# Sparse features in Example proto.
feature_map.update({k: sparse_float32
for k in
['image/object/bbox/xmin', 'image/object/bbox/ymin',
'image/object/bbox/xmax', 'image/object/bbox/ymax']})
features = tf.parse_single_example(example_serialized, feature_map)
label = tf.cast(features['image/class/label'], dtype=tf.int32)
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
# Note that we impose an ordering of (y, x) just to make life difficult.
bbox = tf.concat(0, [ymin, xmin, ymax, xmax])
# Force the variable number of bounding boxes into the shape
# [1, num_boxes, coords].
bbox = tf.expand_dims(bbox, 0)
bbox = tf.transpose(bbox, [0, 2, 1])
return features['image/filename'], label, bbox, features['image/class/text']
def batch_inputs(dataset,
batch_size,
train,
num_preprocess_threads=None,
num_readers=1):
"""Contruct batches of training or evaluation examples from the image dataset.
Args:
dataset: instance of Dataset class specifying the dataset.
See dataset.py for details.
batch_size: integer
train: boolean
num_preprocess_threads: integer, total number of preprocessing threads
num_readers: integer, number of parallel readers
Returns:
images: 4-D float Tensor of a batch of images
labels: 1-D integer Tensor of [batch_size].
Raises:
ValueError: if data is not found
"""
with tf.name_scope('batch_processing'):
data_files = dataset.data_files()
if data_files is None:
raise ValueError('No data files found for this dataset')
# Create filename_queue
if train:
filename_queue = tf.train.string_input_producer(
data_files, shuffle=True, capacity=16)
else:
filename_queue = tf.train.string_input_producer(data_files,
shuffle=False,
capacity=1)
if num_preprocess_threads is None:
num_preprocess_threads = FLAGS.num_preprocess_threads
if num_preprocess_threads % 4:
raise ValueError('Please make num_preprocess_threads a multiple '
'of 4 (%d % 4 != 0).', num_preprocess_threads)
if num_readers is None:
num_readers = FLAGS.num_readers
if num_readers < 1:
raise ValueError('Please make num_readers at least 1')
# Approximate number of examples per shard.
examples_per_shard = 1024
# Size the random shuffle queue to balance between good global
# mixing (more examples) and memory use (fewer examples).
# 1 image uses 299*299*3*4 bytes = 1MB
# The default input_queue_memory_factor is 16 implying a shuffling queue
# size: examples_per_shard * 16 * 1MB = 17.6GB
min_queue_examples = examples_per_shard * FLAGS.input_queue_memory_factor
if train:
examples_queue = tf.RandomShuffleQueue(
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples,
dtypes=[tf.string])
else:
examples_queue = tf.FIFOQueue(
capacity=examples_per_shard + 3 * batch_size,
dtypes=[tf.string])
reader = tf.TFRecordReader()
_, example_serialized = reader.read(filename_queue)
filename, label_index, bbox, label_text = parse_example_proto(example_serialized)
fn = FLAGS.data_dir + '/' + label_text + '/' + filename
examples_qr = tf.train.queue_runner.QueueRunner(examples_queue,
[examples_queue.enqueue([fn])])
tf.train.queue_runner.add_queue_runner(examples_qr)
images_and_labels = []
for thread_id in range(num_preprocess_threads):
# Parse a serialized Example proto to extract the image and metadata.
whole_file_reader = tf.WholeFileReader()
_, image_buffer = whole_file_reader.read(examples_queue)
image = image_preprocessing(image_buffer, bbox, train, thread_id)
images_and_labels.append([image, label_index])
images, label_index_batch = tf.train.batch_join(
images_and_labels,
batch_size=batch_size,
capacity=2 * num_preprocess_threads * batch_size)
# Reshape images into these desired dimensions.
height = FLAGS.image_size
width = FLAGS.image_size
depth = 3
images = tf.cast(images, tf.float32)
images = tf.reshape(images, shape=[batch_size, height, width, depth])
# Display the training images in the visualizer.
tf.image_summary('images', images)
return images, tf.reshape(label_index_batch, [batch_size])