-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtum-vi_run_all.py
211 lines (173 loc) · 8.99 KB
/
tum-vi_run_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
import argparse
import subprocess
import csv
import os.path
from send2trash import send2trash
import numpy as np
import shutil
import sophus as sp
from scipy.spatial.transform import Rotation as R
sequences = [
"room1",
"room2",
"room3",
"room4",
"room5",
"room6"
]
def convert_gt(orig_gt_file_name, new_gt_file_name, T_i_c):
"""
Converts the ground truth poses into the right coordinate frame
"""
csv_row_dicts = []
with open(orig_gt_file_name) as old_gt_file:
old_gt_reader = csv.DictReader(old_gt_file, delimiter=',')
for row in old_gt_reader:
T_w_i = sp.SE3(R.from_quat([float(row['qx']), float(row['qy']), float(row['qz']), float(
row['qw'])]).as_matrix(), [float(row['tx']), float(row['ty']), float(row['tz'])])
T_w_c = T_w_i * T_i_c
R_w_c = R.from_matrix(T_w_c.rotationMatrix())
csv_row_dicts.append({
"#timestamp [ns]": float(row['# timestamp[ns]']),
"p_RS_R_x [m]": T_w_c.translation()[0],
"p_RS_R_y [m]": T_w_c.translation()[1],
"p_RS_R_z [m]": T_w_c.translation()[2],
"q_RS_x []": R_w_c.as_quat()[0],
"q_RS_y []": R_w_c.as_quat()[1],
"q_RS_z []": R_w_c.as_quat()[2],
"q_RS_w []": R_w_c.as_quat()[3]
})
with open(new_gt_file_name, 'w') as new_gt_file:
fieldnames = ["#timestamp [ns]", "p_RS_R_x [m]", "p_RS_R_y [m]",
"p_RS_R_z [m]", "q_RS_x []", "q_RS_y []", "q_RS_z []", "q_RS_w []"]
new_gt_writer = csv.DictWriter(new_gt_file, fieldnames=fieldnames)
new_gt_writer.writeheader()
for row_dict in csv_row_dicts:
new_gt_writer.writerow(row_dict)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='''
This script runs over many sequences (specified in 'sequences') of the TUM-VI dataset. Every sequence is executed 'runs_per_sequence' times. The evaluation script from TUM-RGBD (also used by ORB-SLAM3) is used to calculate the Root Mean Square Absolute Trajectory Error (RMS ATE). The median of all runs is reported in 'rmsate_summary.txt'.
''')
parser.add_argument(
"--dataset_path",
help="Path to the TUM-VI dataset. Should lead to a directory that contains the folders '1024_16' and '512_16'.")
parser.add_argument(
"--output_path", help="Path to to where the evaluation results should be stored.")
parser.add_argument(
"--resolution", help="Either '1024_16' or '512_16'. Default: '512_16'", default="512_16")
parser.add_argument('--runs_per_sequence',
help='How often should every sequence be evaluated. Default: 3', default=3)
parser.add_argument('--setup',
help='Either "mono", "stereo-inertial" or "stereo"', default="stereo-inertial")
args = parser.parse_args()
runs_per_sequence = int(args.runs_per_sequence)
dir_path = os.path.dirname(os.path.realpath(__file__))
result_file = "%s/trajectory.txt" % dir_path
summary_file = os.path.join(
args.output_path, f"{args.setup}_rmsate_summary.txt")
if os.path.isfile(summary_file):
print("An old version of 'rmsate_summary.txt' exists. Going to delete it.")
send2trash(summary_file)
with open(summary_file, "a") as s_file:
s_file.write(
"#sequence name: median RMS ATE, fail count/ runs per sequence\n")
if args.setup == "mono":
T_i_c = sp.SE3(R.from_quat([-0.013392900690257393, -0.6945866755293793, 0.7192437840259219,
0.007639340823570553]).as_matrix(), [0.04548094812071685, -0.07145370002838907, -0.046315428444919249])
else:
T_i_c = sp.SE3()
# run over all sequences
for sequence in sequences:
sequence_output_path = os.path.join(
args.output_path, f"{sequence}_{args.setup}")
if not os.path.isdir(sequence_output_path):
os.mkdir(sequence_output_path)
sequence_path = "%s/%s/dataset-%s_%s" % (
args.dataset_path, args.resolution, sequence, args.resolution)
print("Looking for a sequence in %s" % sequence_path)
orig_gt_file_name = os.path.join(sequence_path, "dso/gt_imu.csv")
new_gt_file_name = os.path.join(dir_path, f"{sequence}-gt.csv")
convert_gt(orig_gt_file_name, new_gt_file_name, T_i_c)
# initialize statistics
rmsates = np.zeros(runs_per_sequence, dtype=np.float64)
fail_count = 0
# execute this sequence runs_per_sequence times
for run_number in range(runs_per_sequence):
print("Running granite on sequence %s run number %d" %
(sequence, run_number + 1))
failed = False
# the result.txt file is the indicator if a run was successful
# we delete it know to see if a new file exists after granite finished
if os.path.isfile(result_file):
os.remove(result_file)
# execute granite
subprocess.run(["%s/../../build/granite_vio" % dir_path,
"--dataset-path", sequence_path,
"--cam-calib", os.path.join(
dir_path, f"../../data/tumvi_512_ds_calib_{args.setup.replace('-inertial', '')}.json"),
"--dataset-type", "euroc",
"--config-path", os.path.join(
dir_path, "../../data", f"tumvi_512_config_{args.setup.replace('-', '_')}.json"),
#"--marg-data", "tumvi_marg_data",
"--show-gui", "0",
#"--result-path", "room1-result.txt",
"--save-trajectory", "tum",
"--use-imu", "1" if args.setup == "stereo-inertial" else "0"
],
cwd=dir_path)
# indicator if the run was successful
if not os.path.isfile(result_file):
failed = True
fail_count += 1
print("Granite on sequence %s run number %d FAILED" %
(sequence, run_number + 1))
if not failed:
print("Calculating RMS ATE for %s run number %d" %
(sequence, run_number + 1))
# Calculate RMS ATE by using the evaluation script from TUM-RGBD (also used by ORB-SLAM3)
evaluate_ate_scale_proc = subprocess.Popen(["python2", "-u",
"%s/evaluate_ate_scale.py" % dir_path,
new_gt_file_name,
result_file,
"--time_factor", "1e9",
#"--max_difference", "0.1",
"--plot", "plot-tumvi.svg"],
cwd=dir_path,
universal_newlines=True, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
stdout = evaluate_ate_scale_proc.communicate()[0]
# parse the output of the evaluation script
try:
if(args.setup == "mono"):
rmsate = float(
stdout.rstrip().split(',')[2])
else:
rmsate = float(
stdout.rstrip().split(',')[0])
if(rmsate > 1000):
failed = True
fail_count += 1
print("Granite on sequence %s run number %d FAILED" %
(sequence, run_number + 1))
else:
rmsates[run_number] = rmsate
print("RMS ATE: %f" % rmsates[run_number])
except:
print(stdout)
if os.path.isfile(result_file):
shutil.move(result_file, os.path.join(
sequence_output_path, f"{run_number + 1}_trajectory.txt"))
if os.path.isfile("plot-tumvi.svg"):
shutil.move("plot-tumvi.svg", os.path.join(
sequence_output_path, f"{run_number + 1}_plot.svg"))
# get median of runs
median = np.NaN
if fail_count < runs_per_sequence:
median = np.median(rmsates[rmsates != 0])
# write statistics
with open(summary_file, "a") as s_file:
s_file.write("%s: %f, %d/%d\n" %
(sequence, median, fail_count, runs_per_sequence))
print("median RMS ATE of %s: %f" % (sequence, median))
print("failed %d/%d" % (fail_count, runs_per_sequence))