-
Notifications
You must be signed in to change notification settings - Fork 12
/
evaluate_ate_scale.py
272 lines (231 loc) · 11.5 KB
/
evaluate_ate_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/usr/bin/python2
# Modified by Raul Mur-Artal and Martin Wudenka
# Automatically compute the optimal scale factor for monocular VO/SLAM.
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of TUM nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements:
# sudo apt-get install python-argparse
"""
This script computes the absolute trajectory error from the ground truth
trajectory and the estimated trajectory.
"""
import sys
import numpy
import argparse
import associate
def align(model, data):
"""Align two trajectories using the method of Horn (closed-form).
Input:
model -- first trajectory (3xn)
data -- second trajectory (3xn)
Output:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""
numpy.set_printoptions(precision=3, suppress=True)
model_zerocentered = model - model.mean(1)
data_zerocentered = data - data.mean(1)
W = numpy.zeros((3, 3))
for column in range(model.shape[1]):
W += numpy.outer(model_zerocentered[:,
column], data_zerocentered[:, column])
U, d, Vh = numpy.linalg.linalg.svd(W.transpose())
S = numpy.matrix(numpy.identity(3))
if(numpy.linalg.det(U) * numpy.linalg.det(Vh) < 0):
S[2, 2] = -1
rot = U*S*Vh
rotmodel = rot*model_zerocentered
dots = 0.0
norms = 0.0
for column in range(data_zerocentered.shape[1]):
dots += numpy.dot(data_zerocentered[:,
column].transpose(), rotmodel[:, column])
normi = numpy.linalg.norm(model_zerocentered[:, column])
norms += normi*normi
s = float(dots/norms)
transGT = data.mean(1) - s*rot * model.mean(1)
trans = data.mean(1) - rot * model.mean(1)
model_alignedGT = s*rot * model + transGT
model_aligned = rot * model + trans
alignment_errorGT = model_alignedGT - data
alignment_error = model_aligned - data
trans_errorGT = numpy.sqrt(numpy.sum(numpy.multiply(
alignment_errorGT, alignment_errorGT), 0)).A[0]
trans_error = numpy.sqrt(numpy.sum(numpy.multiply(
alignment_error, alignment_error), 0)).A[0]
return rot, transGT, trans_errorGT, trans, trans_error, s
def plot_traj(ax, stamps, traj, style, color, label):
"""
Plot a trajectory using matplotlib.
Input:
ax -- the plot
stamps -- time stamps (1xn)
traj -- trajectory (3xn)
style -- line style
color -- line color
label -- plot legend
"""
stamps.sort()
interval = numpy.median([s-t for s, t in zip(stamps[1:], stamps[:-1])])
x = []
y = []
last = stamps[0]
for i in range(len(stamps)):
if stamps[i]-last < 20*interval:
x.append(traj[i][0])
y.append(traj[i][1])
elif len(x) > 0:
ax.plot(x, y, style, color=color, label=label)
ax.scatter(traj[i][0], traj[i][1], s=1, color=color)
label = ""
x = []
y = []
last = stamps[i]
if len(x) > 0:
ax.plot(x, y, style, color=color, label=label)
if __name__ == "__main__":
# parse command line
parser = argparse.ArgumentParser(description='''
This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory.
''')
parser.add_argument(
'first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)')
parser.add_argument(
'second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)')
parser.add_argument(
'--offset', help='time offset added to the timestamps of the second file (default: 0.0)', default=0.0)
parser.add_argument(
'--scale', help='scaling factor for the second trajectory (default: 1.0)', default=1.0)
parser.add_argument(
'--max_difference', help='maximally allowed time difference for matching entries (default: 10000000 ns)', default=20000000)
parser.add_argument(
'--time_factor', type=float, help='Factor to multiply the est time with.', default=1.0)
parser.add_argument(
'--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)')
parser.add_argument('--save_associations',
help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)')
parser.add_argument(
'--plot', help='plot the first and the aligned second trajectory to an image (format: png)')
parser.add_argument(
'--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true')
parser.add_argument(
'--verbose2', help='print scale error and RMSE absolute translational error in meters after alignment with and without scale correction', action='store_true')
args = parser.parse_args()
first_list = associate.read_file_list(args.first_file, False)
second_list = associate.read_file_list(args.second_file, False, time_factor=args.time_factor)
matches = associate.associate(first_list, second_list, float(
args.offset), float(args.max_difference))
if len(matches) < 2:
sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?")
first_xyz = numpy.matrix(
[[float(value) for value in first_list[a][0:3]] for a, b in matches]).transpose()
second_xyz = numpy.matrix([[float(value)*float(args.scale)
for value in second_list[b][0:3]] for a, b in matches]).transpose()
dictionary_items = second_list.items()
sorted_second_list = sorted(dictionary_items)
second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in sorted_second_list[i][1][0:3]]
for i in range(len(sorted_second_list))]).transpose() # sorted_second_list.keys()]).transpose()
rot, transGT, trans_errorGT, trans, trans_error, scale = align(
second_xyz, first_xyz)
second_xyz_aligned = scale * rot * second_xyz + transGT
second_xyz_notscaled = rot * second_xyz + trans
second_xyz_notscaled_full = rot * second_xyz_full + trans
first_stamps = first_list.keys()
first_stamps.sort()
first_xyz_full = numpy.matrix(
[[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose()
second_stamps = second_list.keys()
second_stamps.sort()
second_xyz_full = numpy.matrix([[float(value)*float(args.scale)
for value in second_list[b][0:3]] for b in second_stamps]).transpose()
second_xyz_full_aligned = scale * rot * second_xyz_full + transGT
if args.verbose:
print "compared_pose_pairs %d pairs" % (len(trans_error))
print "absolute_translational_error.rmse %f m" % numpy.sqrt(numpy.dot(trans_error, trans_error) / len(trans_error))
print "absolute_translational_error.mean %f m" % numpy.mean(trans_error)
print "absolute_translational_error.median %f m" % numpy.median(trans_error)
print "absolute_translational_error.std %f m" % numpy.std(trans_error)
print "absolute_translational_error.min %f m" % numpy.min(trans_error)
print "absolute_translational_error.max %f m" % numpy.max(trans_error)
print "max idx: %i" % numpy.argmax(trans_error)
else:
# print "%f, %f " % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
# print "%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
print "%f,%f,%f,%f" % (numpy.sqrt(numpy.dot(trans_error, trans_error) / len(trans_error)), scale, numpy.sqrt(numpy.dot(trans_errorGT, trans_errorGT) / len(trans_errorGT)), matches[-1][0])
# print "%f" % len(trans_error)
if args.verbose2:
print "compared_pose_pairs %d pairs" % (len(trans_error))
print "absolute_translational_error.rmse %f m" % numpy.sqrt(numpy.dot(trans_error, trans_error) / len(trans_error))
print "absolute_translational_errorGT.rmse %f m" % numpy.sqrt(numpy.dot(trans_errorGT, trans_errorGT) / len(trans_errorGT))
if args.save_associations:
file = open(args.save_associations, "w")
file.write("\n".join(["%f %f %f %f %f %f %f %f" % (a, x1, y1, z1, b, x2, y2, z2) for (
a, b), (x1, y1, z1), (x2, y2, z2) in zip(matches, first_xyz.transpose().A, second_xyz_aligned.transpose().A)]))
file.close()
if args.save:
file = open(args.save, "w")
file.write("\n".join(["%f " % stamp+" ".join(["%f" % d for d in line])
for stamp, line in zip(second_stamps, second_xyz_notscaled_full.transpose().A)]))
file.close()
if args.plot:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from matplotlib.patches import Ellipse
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
plot_traj(ax, first_stamps, first_xyz_full.transpose().A,
'-', "black", "ground truth")
plot_traj(ax, second_stamps, second_xyz_full_aligned.transpose(
).A, '-', "blue", "estimated")
label = "difference"
for (a, b), (x1, y1, z1), (x2, y2, z2) in zip(matches, first_xyz.transpose().A, second_xyz_aligned.transpose().A):
ax.plot([x1, x2], [y1, y2], '-', color="red",
linewidth=0.5, label=label)
label = ""
ax.legend()
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
x_diff = first_xyz_full[0].max() - first_xyz_full[0].min()
x_center = first_xyz_full[0].min() + 0.5 * x_diff
y_diff = first_xyz_full[1].max() - first_xyz_full[1].min()
y_center = first_xyz_full[1].min() + 0.5 * y_diff
max_diff = numpy.max([x_diff, y_diff])
ax.set_xlim(x_center-0.55 * max_diff, x_center+0.55 * max_diff)
ax.set_ylim(y_center-0.55 * max_diff, y_center+0.55 * max_diff)
# plt.axis('equal')
plt.tight_layout()
plt.grid()
plt.savefig(args.plot, format="svg")