-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_cv_with_voting.py
322 lines (262 loc) · 10.4 KB
/
train_cv_with_voting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""..."""
import argparse
import colorama
import data
import json
import logging
import numpy as np
import os
import random
import sys
import time
import torch
import wandb
from datetime import datetime
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedShuffleSplit
from transformers import AdamW
from utils import training_utils as train_utils
from utils.colors import GREEN
from utils.colors import RED
from utils.colors import RESET
from utils.evaluate import calculate_voting_winners
from utils.evaluate import evaluate_on_testset
from utils.evaluate import evaluate_on_testset_for_votings
from utils.few_shot_sampler import FewShotSampler
from utils.trainer import train_model
colorama.init()
wandb.init(project="final_binary_classification", entity="lraithel")
DATE = datetime.now().strftime("%d_%m_%Y_%H_%M_%S")
logging.basicConfig(level=logging.INFO)
local_rank = int(os.environ.get("LOCAL_RANK", -1))
if torch.cuda.is_available():
device = torch.device("cuda", local_rank)
else:
device = torch.device("cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", default=None, help="Path to config file.")
parser.add_argument(
"-sp",
"--save_probas",
action="store_true",
help="Save probas and true labels for visualization.",
)
parser.add_argument(
"-debug", "--debug", action="store_true", help="Run with test data."
)
args = parser.parse_args()
with open(args.config, "r") as read_handle:
config = json.load(read_handle)
# parameters loaded from config (does not change (anymore))
epochs = config["epochs"]
debug = config["debug"]
min_length = config["min_length"]
max_length = config["max_length"]
model_name = config["model_name"]
model_paths = config["model_paths"]
patience = config["patience"]
test_data = config["test_data"]
train_dev_data = config["train_dev_data"]
batch_size = config["batch_size"]
max_length = config["max_length"]
post_processing = config.get("post_processing", 0)
wandb.config.epochs = epochs
wandb.config.min_length = min_length
wandb.config.model_name = model_name
wandb.config.patience = patience
wandb.config.model_paths = model_paths
wandb.config.test_data = test_data
wandb.config.train_dev_data = train_dev_data
wandb.config.batch_size = batch_size
wandb.config.max_length = max_length
sweep_config = wandb.config
# in some modes we do not need negative samples (per_class) or
# source samples (per_class, add_neg)
train_sampler = sweep_config["train_sampler"]
seed = sweep_config["seed"]
try:
learning_rate = sweep_config["learning_rate"]
except KeyError:
learning_rate = 0.00001056
wandb.config.learning_rate = learning_rate
try:
freeze_all = sweep_config["freeze_all"]
except KeyError:
freeze_all = 1
wandb.config.freeze_all = freeze_all
# overwrite with test data in debug mode
if config["debug"]:
logging.info(f"{RED} Running in debug mode.{RESET}")
epochs = 2
batch_size = 4
min_length = 3
max_length = 50
train_dev_data = "data/old/forum_data/combined/TEST_traindevset_combined.jsonl"
test_data = "data/old/forum_data/combined/TEST_testset_combined.jsonl"
model_paths = [
"/home/lisa/projects/adr_classification/fine_tuned/model_weights_14_12_2021_12_01_28.pth",
"/home/lisa/projects/adr_classification/fine_tuned/model_weights_14_12_2021_12_01_28.pth",
"/home/lisa/projects/adr_classification/fine_tuned/model_weights_14_12_2021_12_01_28.pth",
]
model_name = "xlmroberta"
logging.info(f"{GREEN} Training with {model_name}\n{RESET}")
# get test data (always stays the same)
(
test_input_ids,
test_attention_masks,
test_labels,
langs_test,
test_sentences,
) = data.prepare_test_data(
model_name=model_name,
test_data_file=test_data,
min_num_tokens=min_length,
max_num_tokens=max_length,
)
test_dataloader, num_test_sentences = data.get_test_data_loader(
input_ids=test_input_ids,
attention_masks=test_attention_masks,
labels=test_labels,
batch_size=batch_size,
)
# create the results dict
all_predictions = {}
for i in range(0, num_test_sentences):
all_predictions[i] = []
# prepare data for the train and dev data
docs, int_labels, languages, trans_labels = data.prepare_data(
train_dev_data, min_num_tokens=min_length, max_num_tokens=max_length
)
# take only the texts from the dictionary
sentences = [doc["text"] for doc in docs]
(input_ids, attention_masks, labels) = data.tokenize(
model_name=model_name,
sentences=sentences,
labels=int_labels,
max_length=max_length,
)
test_size = 0.1
cross_val = 1
# chosen via sweep: seed, mode, num_shots
for model_number, model_path in enumerate(model_paths):
print(f"model number {model_number}: {model_path}")
global_val_loss = 0
global_train_loss = 0
macro_F1 = 0
global_macro_F1 = 0
lowest_loss = float("inf")
best_model = None
# keep the split fixed for all experiments, only vary the seed for the models
sss = StratifiedShuffleSplit(
n_splits=cross_val, test_size=test_size, random_state=seed
)
folds = sss.split(sentences, int_labels)
for fold_num, (train_index, val_index) in enumerate(folds):
logging.info(
f"\n{GREEN}======== Training on fold {fold_num + 1} /"
f" {cross_val} ========\n{RESET}"
)
wandb.log({"current_fold": fold_num + 1})
input_ids_train = input_ids[train_index]
attention_masks_train = attention_masks[train_index]
labels_train = labels[train_index]
input_ids_val = input_ids[val_index]
attention_masks_val = attention_masks[val_index]
labels_val = labels[val_index]
wandb.log({f"fold_{fold_num}": {"train_data_size": len(input_ids_train)}})
train_loader = data.get_data_loader(
input_ids_train,
attention_masks_train,
labels_train,
batch_size=batch_size,
shuffle=True,
sampler=train_sampler,
model_name=model_name,
)
# we do not need sample weights in the validation data
val_loader = data.get_data_loader(
input_ids_val,
attention_masks_val,
labels_val,
batch_size=batch_size,
shuffle=True,
sampler=False,
)
# Loading fine-tuned model
logging.info(f"{GREEN} Loading fine-tuned model from {model_path}{RESET}")
model = train_utils.load_fine_tuned_model(
model_id=model_path, model_name=model_name
)
# freeze all (except the classifier), otherwise fine-tune everything
if freeze_all:
# freeze every layer except the classifier
for name, param in model.named_parameters():
if "classifier" not in name:
param.requires_grad = False
model.to(device)
optimizer = AdamW(
model.parameters(), lr=learning_rate, eps=1e-8 # lr=2e-5,
)
# fine tune model
(newest_model, avg_val_loss, avg_train_loss, new_macro_F1) = train_model(
model=model,
train_dataloader=train_loader,
validation_dataloader=val_loader,
epochs=epochs,
optimizer=optimizer,
patience=patience,
fold=fold_num + 1,
seed=seed,
)
logging.info(f"{GREEN} new macro F1: {new_macro_F1}{RESET}")
global_val_loss += avg_val_loss
global_train_loss += avg_train_loss
global_macro_F1 += new_macro_F1
if avg_val_loss < lowest_loss:
wandb.log({"fold_with_lowest_loss": fold_num})
lowest_loss = avg_val_loss
# best_model = newest_model
# update the model if the F1 score increases
if new_macro_F1 > macro_F1:
wandb.log({"fold_with_highest_F1": fold_num})
macro_F1 = new_macro_F1
best_model = newest_model
wandb.log(
{
"global_val_loss": global_val_loss / cross_val,
"global_train_loss": global_train_loss / cross_val,
"global_macro_F1": global_macro_F1 / cross_val,
}
)
# ----------------------------------------------------------------------- #
# save the best model with a model identifier containing the date
new_model_path = "/".join(model_path.split("/")[:-1])
new_model_id = os.path.join(
new_model_path,
f"model_full_de_data_{model_name}_{model_number}_seed_{seed}_freeze_{freeze_all}_lr_{learning_rate}_{train_sampler}.pth",
)
wandb.log({f"model_id_new_{model_name}_{model_number}": new_model_id})
logging.info(f"{GREEN} Model ID: {new_model_id}{RESET}")
train_utils.save_fine_tuned_model(best_model, model_id=new_model_id)
# run model on test data; return a dict with a prediction per sample:
# {sample_1: 1, smaple_2: 0, sample_1: 0, ...}
results_per_doc, y_true, = evaluate_on_testset_for_votings(
model=best_model,
prediction_dataloader=test_dataloader,
num_sentences=num_test_sentences,
model_name=model_name,
model_number=model_number,
)
# {sample_1: [0, 1, 1, 1, 0], sample_2: [0, 0, 0, 1, 0]}
for sample, prediction in results_per_doc.items():
all_predictions[sample].append(prediction)
for sample, predictions in all_predictions.items():
assert len(predictions) == len(model_paths)
calculate_voting_winners(
all_predictions=all_predictions,
y_true=y_true,
decoded_sentences=test_sentences,
languages=langs_test,
post_processing=post_processing,
)