forked from Rupal17shah/api-generator-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_SQL.py
132 lines (126 loc) · 5.06 KB
/
cluster_SQL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import tensorflow as tf
import keras
import pandas as pd
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import DBSCAN
from sklearn import metrics
import matplotlib.pyplot as plt
from datetime import datetime
#Remember 0: update, 1: get, 2: delete, 3: insert, 4: misc
def validate_date(date_text):
try:
datetime.strptime(date_text, '%Y-%m-%d') #to check the if the format matches SQL date format
return True
except ValueError:
return False
split= [] #contains a list
num_of_types_of_queries= {}
def splitter(file):
update = [] #initialise empty lists for the main 5 types of queries
get = [] #read
delete = []
insert = []
misc = []
# file = pd.to_frame(file)
queries = file['QUERY']
queries = queries.to_frame()
for i in range(0, len(queries)):
queries.iat[i, 0]= queries.iat[i, 0].lower()
if((queries.iat[i, 0])[slice(6)]=='select'):
get.append(queries.iat[i, 0])
elif((queries.iat[i, 0])[slice(6)]=='update'):
update.append(queries.iat[i, 0])
elif((queries.iat[i, 0])[slice(6)]=='delete'):
delete.append(queries.iat[i, 0])
elif((queries.iat[i, 0])[slice(6)]=='insert'):
insert.append(queries.iat[i, 0])
else:
misc.append(queries.iat[i, 0])
split.append(update) #0 is update
split.append(get) #1 is get
split.append(delete) #2 is delete
split.append(insert) #3 is insert
split.append(misc) #4 is misc
return split
def num_queries(split):
for i in range(0, len(split)):
num_of_types_of_queries[i]= len(split[i])
return num_of_types_of_queries #return the count of the queries of each type
def gen_module(get):
# print(get)
final_api = pd.DataFrame(columns=['text', 'datatype']) #contain all the APIs irrespective of the type of query
tokenizer = Tokenizer(
num_words=5000,
filters='!"#$%&+-/:;?@[\\]^{|}~\t\n', #these will be ignored during tokenization
lower=True, #makes all the queries in lowercase
split=' ')
tokenizer.fit_on_texts(get)
# print(tokenizer)
word_index = tokenizer.word_index
training_sequences = tokenizer.texts_to_sequences(get)
# print(training_sequences)
training_padded = pad_sequences(training_sequences,maxlen=100,
truncating= 'post', padding='post') #all sequences are made of equal length
# t_sne= TSNE(n_components=3, perplexity= 30, learning_rate='auto',
# init='random', n_iter= 5000) #dimension reduction using t_SNE
# train_embedded= t_sne.fit_transform(training_padded)
# print(training_padded)
pca= PCA(n_components= 3)
train_embedded= pca.fit_transform(training_padded)
print(train_embedded.shape)
scaler= MinMaxScaler()
train_scaled= scaler.fit_transform(train_embedded)
model63 = DBSCAN(eps=0.03,
min_samples=10,
metric='euclidean',
metric_params=None,
algorithm='auto',
leaf_size=30,
p=None,
n_jobs=None,
)
clm63= model63.fit(train_scaled)
print(clm63.labels_)
get= pd.DataFrame(get)
get['class']= clm63.labels_ #adds class to each query based upon the cluster
get= get.sort_values(by=['class'])
get_class={} #initialize a dictionary to store the APIs
print("Hello")
final_command= pd.DataFrame(columns=['text', 'datatype'])
print(final_command)
print(max(clm63.labels_)+1)
for i in range(0, max(clm63.labels_)+1):
get_class[i]= get.loc[get['class']==i]
print("hello1")
for i in range(0, max(clm63.labels_)+1):
print("printhello")
fin_seq = tokenizer.texts_to_sequences(get_class[i].loc[:,0])
fin_padded = pad_sequences(fin_seq,maxlen=100,
truncating= 'post', padding='post')
final= fin_padded[0]*len(fin_padded)
for j in range(1, len(get_class[i])):
final= fin_padded[0]-fin_padded[j]
conflicts=[]
datatype=[]
txt= get_class[i].iat[0,0]
x= txt.split()
for k in range(0, len(final)):
if(final[k]!=0 and k<len(x)):
conflicts.append(k) #notes the conflicts locations
if(x[k].isnumeric()):
datatype.append('int')
elif(validate_date(x[k])):
datatype.append('date')
else:
datatype.append('str')
x[k]= '{}' #replaces conflict points with placeholder
final_command.loc[i, 'text']= (" ".join(x))
final_command.loc[i, 'datatype']= datatype
final_api= final_command.drop_duplicates(subset=['text'])
print(final_api)
return final_api