-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
194 lines (145 loc) · 5.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
import librosa
import numpy as np
from keras.models import load_model
import joblib
import sounddevice as sd
from scipy.io.wavfile import write
import tempfile
import os
import tensorflow as tf
# Load the ML model
# model = joblib.load('my_model.joblib')
model = tf.keras.models.load_model('NewModel.h5')
# Define emotion labels
emotion_labels = ['Angry', 'Disgust', 'Fearful',
'Happy', 'Neutral', 'Sad', 'Surprise']
# Function to extract audio features
def extract_features(data, sample_rate):
# # ZCR
# zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
# # Chroma_stft
# stft = np.abs(librosa.stft(data))
# chroma_stft = np.mean(librosa.feature.chroma_stft(
# S=stft, sr=sample_rate).T, axis=0)
# MFCC
mfcc = np.mean(librosa.feature.mfcc(
y=data, n_mfcc=40, sr=sample_rate).T, axis=0)
# # Root Mean Square Value
# rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
# # MelSpectrogram
# mel = np.mean(librosa.feature.melspectrogram(
# y=data, sr=sample_rate).T, axis=0)
result = mfcc
return result
# Function to make predictions using the ML model
def make_predictions(features):
# Preprocess the features, if necessary
# ...
# Make predictions using the loaded model
preds = model.predict(features[None])
# Get the index of the highest probability class
preds = np.argmax(preds, axis=1)
return preds
# Function to process the audio file using the loaded model
# def process_audio(file):
# data, sample_rate = librosa.load(file)
# features = extract_features(data, sample_rate)
# # features = np.expand_dims(features, axis=0) # Expand dimensions to match the model's input shape
# predictions = make_predictions(features)
# return predictions
def process_audio(file):
data, sample_rate = librosa.load(file)
# write("Audio Data Shape:", data.shape)
# write("Sample Rate:", sample_rate)
features = extract_features(data, sample_rate)
# features = np.expand_dims(features, axis=0) # Convert features to a batch format
predictions = make_predictions(features)
return predictions
def recAudio():
fs = 44100 # Sample rate
seconds = 3 # Duration of recording
myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=2)
sd.wait() # Wait until recording is finished
write('output.wav', fs, myrecording) # Save as WAV file
st.write("Audio recorded")
# Streamlit web app
# Streamlit web app
def main():
st.set_page_config(page_title="Audio Processing App")
st.title("Emotion Detection App")
# Placeholder for predictions
predictions_placeholder = st.empty()
# Navigation
pages = {
"Home": home_page,
"About Us": about_us_page
}
# Initialize session state
if "selected_page" not in st.session_state:
st.session_state.selected_page = "Home"
# Display the navigation bar
navigation_bar(pages, predictions_placeholder)
# Navigation bar for page selection
def navigation_bar(pages, predictions_placeholder):
selected_page = st.session_state.selected_page
st.sidebar.title("Navigation")
if st.sidebar.button("Home", key="home"):
st.session_state.selected_page = "Home"
if st.sidebar.button("About Us", key="about"):
st.session_state.selected_page = "About Us"
selected_page = st.session_state.selected_page
# Display the selected page
pages[selected_page](predictions_placeholder)
# Home page with file upload feature
def home_page(predictions_placeholder):
predictions_placeholder.text("Predicted Emotion: ")
st.title("Home")
with st.form("my_form"):
uploaded_file = st.file_uploader(
"Choose an audio file", type=["wav", "mp3"], key="up")
submitted = st.form_submit_button("Submit")
if submitted:
if uploaded_file is not None:
predictions = process_audio(file=uploaded_file)
st.success("Audio file processed successfully!")
# Convert predicted class index to emotion label
predicted_emotion = np.array(emotion_labels)[
predictions[0].astype(int)]
# Update the predictions placeholder with the results
predictions_placeholder.write(
"Predicted Emotion: " + predicted_emotion)
else:
st.warning("Please upload an audio file.")
st.subheader("Record Audio")
record_button = st.form_submit_button("Start Recording")
if record_button:
st.write("recording started")
recAudio()
predictions = process_audio('output.wav')
os.remove('output.wav')
st.success("Audio file processed successfully!")
# Convert predicted class index to emotion label
predicted_emotion = np.array(emotion_labels)[
predictions[0].astype(int)]
# Update the predictions placeholder with the results
predictions_placeholder.write(
"Predicted Emotion: " + predicted_emotion)
# About Us page
def about_us_page(predictions_placeholder):
st.title("About Us")
st.markdown(
"""
This web app was developed by the following team members:
**Ayush Awasthi**
- Role: Team Leader
**Atharva Nanoti**
- Role: Team Member
**Shaurya Khetarpal**
- Role: Team Member
**Jasmer Singh Sanjotra**
- Role: Team Member
"""
)
if __name__ == '__main__':
main()