-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconsole.py
156 lines (126 loc) · 4.76 KB
/
console.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import torch
import transformers
from gtts import gTTS
import speech_recognition as sr
from playsound import playsound
from transformers import pipeline,Conversation
from transformers import GPT2LMHeadModel, GPT2Tokenizer
flatten = lambda l: [item for sublist in l for item in sublist]
# Set Logging Level to Error
transformers.logging.set_verbosity_error()
# obtain audio from the microphone
r = sr.Recognizer()
class AI_Companion:
def __init__(self, asr = "openai/whisper-tiny", chatbot = "af1tang/personaGPT",**kwargs):
"""
Create an Instance of the Companion.
Parameters:
asr: Huggingface ASR Model Card. Default: openai/whisper-tiny
chatbot: Huggingface Conversational Model Card. Default: af1tang/personaGPT
"""
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Initialize Speech Recognition Pipeline
self.asr = pipeline("automatic-speech-recognition",model = asr, device = -1 if self.device == "cpu" else 0)
# Load Language Model and Tokenizer
self.model = GPT2LMHeadModel.from_pretrained(chatbot).to(self.device)
self.tokenizer = GPT2Tokenizer.from_pretrained(chatbot,padding_side='left')
# Variables for PersonaGPT
self.personas=[]
self.dialog_hx=[]
self.sett={
"do_sample":True,
"top_k":10,
"top_p":0.92,
"max_length":1000,
}
self.chat = Conversation()
def listen(self, audio, history):
"""
Convert Speech to Text.
Parameters:
audio: Audio Filepath
history: Chat History
Returns:
history : history with recognized text appended
Audio : empty gradio component to clear gradio voice input
"""
text = self.asr(audio)["text"]
history = history + [[text,None]]
return history, None
def add_fact(self, fact):
"""
Add Fact to Persona.
Parameters:
fact
"""
self.personas.append(fact + self.tokenizer.eos_token)
def respond(self, history):
"""
Generates Response to User Input.
Parameters:
history: Chat History
Returns:
history: history with response appended
"""
# Add Personas
personas = self.tokenizer.encode(''.join(['<|p2|>'] + self.personas + ['<|sep|>'] + ['<|start|>']))
# Add User Input
self.chat.add_user_input(history[-1][0])
user_inp= self.tokenizer.encode(history[-1][0] + self.tokenizer.eos_token)
self.dialog_hx.append(user_inp)
bot_input_ids = self.to_var([personas + flatten(self.dialog_hx)]).long()
# Generate Response
full_msg =self.model.generate(bot_input_ids,do_sample = True,
top_k = 10,
top_p = 0.92,
max_new_tokens = 2000,
pad_token_id = self.tokenizer.eos_token_id)
response = self.to_data(full_msg.detach()[0])[bot_input_ids.shape[-1]:]
self.dialog_hx.append(response)
#Add Response to History
history[-1][1] = self.tokenizer.decode(response, skip_special_tokens=True)
# Speak Response
bot.speak(history[-1][1])
return history
def speak(self, text):
"""
Speaks the given text using gTTS,
Parameters:
text: text to be spoken
"""
tts = gTTS(text, lang='en')
tts.save('out.mp3')
playsound("out.mp3")
os.remove("out.mp3")
def to_data(self, x):
if torch.cuda.is_available():
x = x.cpu()
return x.data.numpy()
def to_var(self, x):
if not torch.is_tensor(x):
x = torch.Tensor(x)
if torch.cuda.is_available():
x = x.cuda()
return x
if __name__ == "__main__":
bot = AI_Companion(device = 0)
history = []
bot.speak("Hi, I am your AI Companion. Do you want to add any specific traits?")
persona = input("Y/n")
while persona.lower() == 'y':
bot.add_fact(input("Enter Fact:"))
persona = input("Add More? (Y/n)")
bot.speak("Configured. What you want to talk about?")
for i in range(5):
# Save Audio from mic
with sr.Microphone() as source:
audio = r.listen(source)
with open("audio_file.wav", "wb") as file:
file.write(audio.get_wav_data())
# Bot Listens and Understands Audio(ASR)
history , _ = bot.listen("audio_file.wav",history)
# Print your Conversation
print("You:", history[-1][0])
history = bot.respond(history)
print("Bot:", history[-1][1])