-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
546 lines (475 loc) · 18.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import argparse
import itertools
import logging
import os
import pickle
from collections import defaultdict
from functools import partial
from typing import Union
import fsspec
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from image2layout.train.data import collate_fn, get_dataset
from image2layout.train.fid.model import FIDNetV3, load_fidnet_v3
from image2layout.train.global_variables import GEO_KEYS
from image2layout.train.helpers.metric import (
SingletonTimmInceptionV3,
compute_alignment,
compute_generative_model_scores,
compute_overlap,
compute_overlay,
compute_rshm,
compute_saliency_aware_metrics,
compute_underlay_effectiveness,
compute_validity,
)
from image2layout.train.helpers.rich_utils import CONSOLE, get_progress
from image2layout.train.helpers.task import REFINEMENT_NOISE_STD
from image2layout.train.helpers.util import box_cxcywh_to_xyxy, set_seed
from image2layout.train.helpers.visualizer import mask_out_bbox_area
from omegaconf import OmegaConf
from torch import Tensor
logger = logging.getLogger(__name__)
KEYS = ["label", "width", "height", "center_x", "center_y", "id"]
def perturb_layout(generated_samples):
outputs = []
logger.info(f"Add noise to layout with std={REFINEMENT_NOISE_STD}")
for batch in generated_samples:
for key in GEO_KEYS:
noise = torch.normal(
0,
REFINEMENT_NOISE_STD,
size=(len(batch[key]),),
)
batch[key] = torch.tensor(batch[key])
batch[key] = torch.clamp(batch[key] + noise, min=0.0, max=1.0)
batch[key] = batch[key].tolist()
outputs.append(batch)
return outputs
def load_pkl(pickle_path: str) -> tuple:
"""
Pickle is saved using only python's standard modules for potability.
DictConfig instances are saved as dicts, so we convert it back for convenience.
"""
fs, _ = fsspec.core.url_to_fs(pickle_path)
assert fs.exists(pickle_path), f"{pickle_path} not found"
logger.info(f"Load pickle from {pickle_path}")
with fs.open(pickle_path, "rb") as file_obj:
data = pickle.load(file_obj)
base = pickle_path.split("/")[-1].replace(".pkl", "").split("_")
split = base[0]
seed = base[1]
ckpt_name: str = pickle_path.split("/")[-2].split("_")[-1]
return (
fs,
data["results"],
OmegaConf.create(data["train_cfg"]),
OmegaConf.create(data["test_cfg"]),
split,
seed,
ckpt_name,
)
def print_scores(scores: dict[str, list[float]]) -> None:
tex_text = ""
for k, v in scores.items():
mean, std = np.mean(v), np.std(v)
stdp = std * 100.0 / mean
CONSOLE.print(f"\t{k}: {mean:.4f} ({stdp:.4f}%)")
tex_text += f"& {mean:.4f}\\std{{{stdp:.1f}}}\% "
CONSOLE.print(tex_text + "\\\\")
def compute_average(
scores_all: dict[str, list[dict[str, Union[float, dict[str, float]]]]]
) -> dict[str, dict[str, float]]:
scores_avg = {k: defaultdict(list) for k in scores_all.keys()}
for split, scores in scores_all.items():
for score in scores:
for k, v in score["scores"].items():
# Single check for type
if isinstance(v, float):
scores_avg[split][k].append(v)
else: # if it's not a float, then it's assumed to be a dict based on the provided type hints.
for kk, vv in v.items():
scores_avg[split][f"{k}_{kk}"].append(vv)
# Compute the average
for key, values in scores_avg[split].items():
scores_avg[split][key] = sum(values) / len(values)
# convert back to standard dict
return {k: dict(v) for k, v in scores_avg.items()}
@torch.no_grad() # type: ignore
def _extract_layout_feautures(
loaders: dict[str, torch.utils.data.DataLoader],
fid_model_layout: FIDNetV3,
fid_model_inceptionv3: SingletonTimmInceptionV3,
device: torch.device,
run_on_local: bool,
) -> dict[str, Tensor]:
feats_gts = {
"layout": {},
"image": {},
}
_feats_gts_layout = defaultdict(list)
_feats_gts_image = defaultdict(list)
for split in ["val", "test"]:
pbar = get_progress(
loaders[split], f"[{split}] Computing gt features for FID", run_on_local
)
for batch in pbar:
batch = {
k: v.to(device)
for (k, v) in batch.items()
if k
not in [
"saliency",
"id",
]
}
# Extract layout feature
_feat_layout = fid_model_layout.extract_features(batch)
_feats_gts_layout[split].append(_feat_layout.detach().cpu())
# Extract image feature
# 1. Apply layout-based mask to image
center_x = batch["center_x"] # [bs, max_elem]
center_y = batch["center_y"] # [bs, max_elem]
width = batch["width"] # [bs, max_elem]
height = batch["height"] # [bs, max_elem]
bbox_cxcywh = torch.stack(
[center_x, center_y, width, height], dim=-1
) # [bs, max_elem, 4]
bbox_xyxy = box_cxcywh_to_xyxy(bbox_cxcywh) # [bs, max_elem, 4]
image_maskout = mask_out_bbox_area(batch["image"], bbox_xyxy)
# 2. Extract image feature
_feat_image = fid_model_inceptionv3(image_maskout) # [bs, 2048]
_feats_gts_image[split].append(_feat_image.detach().cpu())
# Layout feature
_feats_gts_layout[split] = torch.cat(_feats_gts_layout[split], dim=0)
feats_gts["layout"][split] = _feats_gts_layout[split]
# image feature
_feats_gts_image[split] = torch.cat(_feats_gts_image[split], dim=0)
feats_gts["image"][split] = _feats_gts_image[split]
return feats_gts
@torch.no_grad()
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--input-dir", type=str, required=True)
parser.add_argument(
"--fid-weight-dir",
type=str,
default=None,
)
parser.add_argument(
"--load-gt-split",
type=str,
choices=["val", "test"],
default=None,
help="instead of loading generated samples, load ground truth samples from the specified split",
)
parser.add_argument(
"--save-score-dir",
type=str,
default="tmp/scores",
)
parser.add_argument(
"--dataset-path",
type=str,
default="",
)
parser.add_argument(
"--add-noise",
action="store_true",
)
parser.add_argument(
"--debug",
action="store_true",
)
parser.add_argument(
"--run-on-local",
action="store_true",
)
parser.add_argument("--batch-size", type=int, default=32)
args = parser.parse_args()
set_seed(0)
if args.debug:
logger.info("Debug mode!")
# Create result directory
fs, path_prefix = fsspec.core.url_to_fs(args.save_score_dir)
if not fs.exists(path_prefix):
fs.makedirs(path_prefix)
use_generated_samples = args.load_gt_split is None
if use_generated_samples:
# Load all pickle files
fs, _ = fsspec.core.url_to_fs(args.input_dir)
scores_all_path = os.path.join(args.input_dir, "scores_all.yaml")
if fs.exists(scores_all_path):
logger.info(f"Find {scores_all_path}. Finish!")
return None
pickle_paths = fs.glob(os.path.join(args.input_dir, "*.pkl"))
logger.info(f"Found pickle files: {pickle_paths=}")
calculate_paired_score = True
else:
pickle_paths = [None]
ckpt_name = "ground-truth dataset"
seed = "None"
split = args.load_gt_split
calculate_paired_score = split != "train"
train_cfg = OmegaConf.create(
{
"dataset": {
"max_seq_length": 10,
"data_dir": args.dataset_path,
"data_type": "parquet",
"path": None,
},
"data": {"transforms": ["image", "shuffle"], "tokenization": False},
"run_on_local": True,
}
)
test_cfg = OmegaConf.create(
{
"dataset": {
"max_seq_length": 10,
"data_dir": args.dataset_path,
"data_type": "parquet",
},
"batch_size": 128,
"dataset_path": args.dataset_path,
}
)
logger.info(f"Use ground-truth {split=} dataset")
# Build dataset
if use_generated_samples:
train_cfg, test_cfg = load_pkl(pickle_paths[0])[2:4]
dataset, features = get_dataset(
dataset_cfg=train_cfg.dataset,
transforms=list(train_cfg.data.transforms),
remove_column_names=["image_width", "image_height"],
)
# Build dataloader
max_seq_length = train_cfg.dataset.max_seq_length
if max_seq_length < 0:
max_seq_length = None
collate_fn_partial = partial(
collate_fn,
max_seq_length=max_seq_length,
)
loaders = {}
batch_size = test_cfg.batch_size
for _split in ["val", "test"]:
loaders[_split] = torch.utils.data.DataLoader(
dataset[_split],
num_workers=2,
batch_size=batch_size,
pin_memory=True,
collate_fn=collate_fn_partial,
persistent_workers=False,
drop_last=False,
shuffle=False,
)
# Build metrics
feature_label = features["label"].feature
batch_eval_funcs = [
compute_alignment,
compute_overlap,
partial(compute_saliency_aware_metrics, feature_label=feature_label),
partial(compute_overlay, feature_label=feature_label),
partial(compute_underlay_effectiveness, feature_label=feature_label),
compute_rshm,
]
# Load FID models for layout
dataset_name = args.dataset_path.split("/")[-1]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
fid_model_layout = FIDNetV3(
num_label=feature_label.num_classes,
max_bbox=train_cfg.dataset.max_seq_length,
)
assert args.fid_weight_dir is not None
fid_model_layout = load_fidnet_v3(fid_model_layout, args.fid_weight_dir).to(device)
# Load FID models for image
fid_model_inceptionv3 = SingletonTimmInceptionV3()
# Compute features of ground-truth data
if not os.path.exists("cache/eval_gt_features"):
os.makedirs("cache/eval_gt_features")
cache_path = f"cache/eval_gt_features/{dataset_name}_FIDNetV3_features.pth"
if os.path.exists(cache_path):
logger.info(f"Find the cache in {cache_path} and loading ...")
feats_gts: dict[str, dict[str, Tensor]] = torch.load(cache_path)
else:
logger.info(f"Extract layout feat. to {cache_path=}")
feats_gts = _extract_layout_feautures(
loaders,
fid_model_layout,
fid_model_inceptionv3,
device,
train_cfg.run_on_local,
)
torch.save(feats_gts, cache_path)
scores_all = defaultdict(list)
for pickle_path in pickle_paths:
# Load picjke
if use_generated_samples:
(
fs,
generated_samples,
train_cfg,
test_cfg,
split,
seed,
ckpt_name,
) = load_pkl(pickle_path)
else:
# Load ground truth samples for gt-gt evaluation
generated_samples = [
{k: v for k, v in dataset[split][i].items() if k in KEYS}
for i in range(len(dataset[split]))
]
generated_samples, validity = compute_validity(generated_samples)
if not use_generated_samples and args.add_noise:
generated_samples = perturb_layout(generated_samples)
# Attach image and saliency to generated samples.
assert len(dataset[split]) == len(generated_samples)
# compute scores for each run
logger.info("Evaluation start!!")
feats_preds: dict[str, list[Tensor]] = {
"layout": [],
"image": [],
}
batch_metrics = defaultdict(list)
# Compute metrics and extract features.
pbar = get_progress(
range(0, len(generated_samples), batch_size),
"Eval generated samples",
run_on_local=args.run_on_local,
)
for i in pbar:
i_end = min(i + batch_size, len(generated_samples))
_batch = generated_samples[i:i_end]
# append image and saliency in batch-wise manner to avoid OOM
for j in range(i, i_end):
assert _batch[j - i]["id"] == dataset[split][j]["id"]
for key in ["image", "saliency"]:
_batch[j - i][key] = dataset[split][j][key]
batch = collate_fn_partial(_batch)
batch_gpu = {k: v.to(device) for (k, v) in batch.items() if k != "id"}
for func in batch_eval_funcs:
for k, v in func(batch).items():
batch_metrics[k].extend(v)
if calculate_paired_score:
# Extract layout feature
with torch.no_grad():
_feat: Tensor = fid_model_layout.extract_features(
batch_gpu
) # [bs, 256]
feats_preds["layout"].append(_feat.detach().cpu())
# Extract image feature
# 1. Apply layout-based mask to image
center_x = batch_gpu["center_x"] # [bs, max_elem]
center_y = batch_gpu["center_y"] # [bs, max_elem]
width = batch_gpu["width"] # [bs, max_elem]
height = batch_gpu["height"] # [bs, max_elem]
bbox_cxcywh = torch.stack(
[center_x, center_y, width, height], dim=-1
) # [bs, max_elem, 4]
bbox_xyxy = box_cxcywh_to_xyxy(bbox_cxcywh) # [bs, max_elem, 4]
image_maskout = mask_out_bbox_area(batch_gpu["image"], bbox_xyxy)
with torch.no_grad():
_feat_image = fid_model_inceptionv3(image_maskout) # [bs, 2048]
feats_preds["image"].append(_feat_image.detach().cpu())
scores = {}
for k, v in batch_metrics.items():
scores[k] = sum(v) / len(v)
scores["validity"] = validity
scores = {k: float(v) for k, v in scores.items()}
if calculate_paired_score:
feats_preds["layout"]: torch.Tensor = torch.cat(feats_preds["layout"], dim=0) # type: ignore
feats_preds["image"]: torch.Tensor = torch.cat(feats_preds["image"], dim=0) # type: ignore
if use_generated_samples:
target_splits = [split]
else:
target_splits = ["val", "test"]
combinations = list(itertools.product(target_splits, ["layout"]))
for target_split, modality in combinations:
logger.info(f"Compute FID for {target_split}--{modality} features")
paired_score: dict[str, float] = {}
assert len(feats_gts[modality][target_split]) == len(
feats_preds[modality]
), f"GT {len(feats_gts[modality][target_split])} != Pred {len(feats_preds[modality])}"
# Compute FID for layout
_score = compute_generative_model_scores(
feats_gts[modality][target_split], feats_preds[modality]
)
# Update key of scores
_score = {
f"{target_split}_{k}_{modality}": v for k, v in _score.items()
}
_mse = F.mse_loss(
feats_gts[modality][target_split], feats_preds[modality]
).item()
_name = "pred" if use_generated_samples else "gt"
logger.info(
f"[{modality}] MSE between gt ({target_split}) and {_name} ({split}) features: {_mse}"
)
scores = {**scores, **_score}
scores = {
"seed": seed,
"pkl_path": pickle_path,
"scores": scores,
}
scores_all[split].append(scores)
# Save scores_all as yaml
if not use_generated_samples:
scores_tmp_path = os.path.join(args.save_score_dir, f"{split}_set.yaml")
save_paths = [scores_tmp_path]
output_score = scores_all
# Create log for pasting to google spread sheet.
log_parts = ["=== metrics ===\n"]
_split = list(scores_all.keys())[0]
log_parts.extend([f"{k}\n" for k in scores_all[_split][0]["scores"].keys()])
log_parts.append("\n\n\n")
for k, v in scores_all[_split][0]["scores"].items():
log_parts.append(f"{v}\n")
log = "".join(log_parts)
for save_log_path in save_paths:
save_log_path = save_log_path.replace(".yaml", ".txt")
with fs.open(save_log_path, "w") as file_obj:
file_obj.writelines(log)
else:
# Define save paths
scores_all_path = os.path.join(args.input_dir, "scores_all.yaml")
save_paths = [scores_all_path]
try:
g = args.input_dir.split("/")
expid = g[5]
expdir = g[6]
scores_all_tmp_path = os.path.join(
args.save_score_dir, f"{expid}___{expdir}___{ckpt_name}.yaml"
)
save_paths.append(scores_all_tmp_path)
except Exception:
pass
scores_avg = compute_average(scores_all)
output_score = {
**scores_all,
"average": scores_avg,
}
# Create log for pasting to google spread sheet.
log_parts = ["=== metrics ===\n"]
log_parts.extend(
[f"{k}\n" for k in scores_avg[list(scores_avg.keys())[0]].keys()]
)
log_parts.append("\n\n\n")
for k, v in scores_avg.items():
log_parts.append(f"=== average {k} ===\n")
log_parts.extend([f"{vv}\n" for kk, vv in v.items()])
log_parts.append("\n\n\n")
log = "".join(log_parts)
for save_log_path in save_paths:
save_log_path = save_log_path.replace(".yaml", ".txt")
with fs.open(save_log_path, "w") as file_obj:
file_obj.writelines(log)
for save_path in save_paths:
logger.info(f"Save score to: {save_path}")
with fsspec.open(save_path, "w") as file_obj:
yaml.dump(output_score, file_obj)
if __name__ == "__main__":
main()