To finish the MixPath code
Done:
- NSGA-II (use pymoo)
- Plot the result
TODO:
- SNPE/OPENVINO's LookupTable
Train
python S1/train_search.py \
--exp_name experiment_name \
--m 4\
--data_dir ~/.torch/datasets \
--seed 2020
Search
python S1/eval_search.py \
--exp_name search_cifar\
--m 4\
--data_dir ~/.torch/datasets \
--model_path ./super_train/experiment_name/super_train_states.pt.tar\
--batch_size 500\
--n_generations 40\
--pop_size 40\
--n_offsprings 10
result of search, f1: Accuracy, f2: parameter amount, f3: GPU latency
result of search, f1: Accuracy, f2: GPU latency
According to https://github.com/kuangliu/pytorch-cifar
Model | Acc. |
---|---|
VGG16 | 92.64% |
ResNet18 | 93.02% |
ResNet50 | 93.62% |
ResNet101 | 93.75% |
MobileNetV2 | 94.43% |
ResNeXt29(32x4d) | 94.73% |
ResNeXt29(2x64d) | 94.82% |
DenseNet121 | 95.04% |
PreActResNet18 | 95.11% |
DPN92 | 95.16% |
MixPath_S1(my) | 95.29% |
This repo provides the supernet of S1 and our confirmatory experiments on NAS-Bench-101.
Dear DL folks, we are opening several precious positions both for professionals and interns avid in AutoML/NAS, please send your resume/cv to [email protected]. 全职/实习生申请投递至前述邮箱。
Python >= 3.6, Pytorch >= 1.0.0, torchvision >= 0.2.0
CIFAR-10 can be automatically downloaded by torchvision
. It has 50,000 images for
training and 10,000 images for validation.
python S1/train_search.py \
--exp_name experiment_name \
--m number_of_paths[1,2,3,4]
--data_dir /path/to/dataset \
--seed 2020 \
python NasBench101/nas_train_search.py \
--exp_name experiment_name \
--m number_of_paths[1,2,3,4]
--data_dir /path/to/dataset \
--seed 2020 \
@article{chu2020mixpath,
title={MixPath: A Unified Approach for One-shot Neural Architecture Search},
author={Chu, Xiangxiang and Li, Xudong and Lu, Yi and Zhang, Bo and Li, Jixiang},
journal={arXiv preprint arXiv:2001.05887},
url={https://arxiv.org/abs/2001.05887},
year={2020}
}