forked from hpcaitech/ColossalAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
215 lines (180 loc) · 8.44 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import re
from datetime import datetime
from setuptools import find_packages, setup
from op_builder.utils import get_cuda_bare_metal_version
try:
import torch
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10):
raise RuntimeError("Colossal-AI requires Pytorch 1.10 or newer.\n"
"The latest stable release can be obtained from https://pytorch.org/")
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
CUDA_HOME = None
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
build_cuda_ext = False
ext_modules = []
is_nightly = int(os.environ.get('NIGHTLY', '0')) == 1
if int(os.environ.get('CUDA_EXT', '0')) == 1:
if not TORCH_AVAILABLE:
raise ModuleNotFoundError(
"PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions"
)
if not CUDA_HOME:
raise RuntimeError(
"CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions"
)
build_cuda_ext = True
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if bare_metal_major != torch_binary_major:
print(f'The detected CUDA version ({raw_output}) mismatches the version that was used to compile PyTorch '
f'({torch.version.cuda}). CUDA extension will not be installed.')
return False
if bare_metal_minor != torch_binary_minor:
print("\nWarning: Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
f"Pytorch binaries were compiled with Cuda {torch.version.cuda}.\n"
"In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. ")
return True
def check_cuda_availability(cuda_dir):
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query
# torch.cuda.get_device_capability(), which will fail if you are compiling in an environment
# without visible GPUs (e.g. during an nvidia-docker build command).
print(
'\nWarning: Torch did not find available GPUs on this system.\n',
'If your intention is to cross-compile, this is not an error.\n'
'By default, Colossal-AI will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
'If you wish to cross-compile for a single specific architecture,\n'
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, _ = get_cuda_bare_metal_version(cuda_dir)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
return False
if cuda_dir is None:
print("nvcc was not found. CUDA extension will not be installed. If you're installing within a container from "
"https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
return False
return True
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
def fetch_requirements(path):
with open(path, 'r') as fd:
return [r.strip() for r in fd.readlines()]
def fetch_readme():
with open('README.md', encoding='utf-8') as f:
return f.read()
def get_version():
setup_file_path = os.path.abspath(__file__)
project_path = os.path.dirname(setup_file_path)
version_txt_path = os.path.join(project_path, 'version.txt')
version_py_path = os.path.join(project_path, 'colossalai/version.py')
with open(version_txt_path) as f:
version = f.read().strip()
# write version into version.py
with open(version_py_path, 'w') as f:
f.write(f"__version__ = '{version}'\n")
if build_cuda_ext:
torch_version = '.'.join(torch.__version__.split('.')[:2])
cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME)[1:])
else:
torch_version = None
cuda_version = None
if torch_version:
f.write(f'torch = "{torch_version}"\n')
else:
f.write('torch = None\n')
if cuda_version:
f.write(f'cuda = "{cuda_version}"\n')
else:
f.write('cuda = None\n')
return version
if build_cuda_ext:
build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME)
if build_cuda_ext:
# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
from op_builder import ALL_OPS
for name, builder_cls in ALL_OPS.items():
print(f'===== Building Extension {name} =====')
ext_modules.append(builder_cls().builder())
# always put not nightly branch as the if branch
# otherwise github will treat colossalai-nightly as the project name
# and it will mess up with the dependency graph insights
if not is_nightly:
version = get_version()
package_name = 'colossalai'
else:
# use date as the nightly version
version = datetime.today().strftime('%Y.%m.%d')
package_name = 'colossalai-nightly'
setup(name=package_name,
version=version,
packages=find_packages(exclude=(
'benchmark',
'docker',
'tests',
'docs',
'examples',
'tests',
'scripts',
'requirements',
'*.egg-info',
)),
description='An integrated large-scale model training system with efficient parallelization techniques',
long_description=fetch_readme(),
long_description_content_type='text/markdown',
license='Apache Software License 2.0',
url='https://www.colossalai.org',
project_urls={
'Forum': 'https://github.com/hpcaitech/ColossalAI/discussions',
'Bug Tracker': 'https://github.com/hpcaitech/ColossalAI/issues',
'Examples': 'https://github.com/hpcaitech/ColossalAI-Examples',
'Documentation': 'http://colossalai.readthedocs.io',
'Github': 'https://github.com/hpcaitech/ColossalAI',
},
ext_modules=ext_modules,
cmdclass={'build_ext': BuildExtension} if ext_modules else {},
install_requires=fetch_requirements('requirements/requirements.txt'),
entry_points='''
[console_scripts]
colossalai=colossalai.cli:cli
''',
python_requires='>=3.6',
classifiers=[
'Programming Language :: Python :: 3',
'License :: OSI Approved :: Apache Software License',
'Environment :: GPU :: NVIDIA CUDA',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: System :: Distributed Computing',
],
package_data={
'colossalai': [
'_C/*.pyi', 'kernel/cuda_native/csrc/*', 'kernel/cuda_native/csrc/kernel/*',
'kernel/cuda_native/csrc/kernels/include/*'
]
})