Skip to content

Latest commit

 

History

History
 
 

mobilevit

MobileViT

MobileViT:Light-weight, General-purpose, and Mobile-friendly Vision Transformer

Introduction

MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters.

Figure 1. Architecture of MobileViT [1]

Results

Our reproduced model performance on ImageNet-1K is reported as follows.

Model Context Top-1 (%) Top-5 (%) Params (M) Recipe Download
mobilevit_xx_small D910x8-G 68.91 88.91 1.27 yaml weights
mobilevit_x_small D910x8-G 74.99 92.32 2.32 yaml weights
mobilevit_small D910x8-G 78.47 94.18 5.59 yaml weights

Notes

  • Context: Training context denoted as {device}x{pieces}-{MS mode}, where mindspore mode can be G - graph mode or F - pynative mode with ms function. For example, D910x8-G is for training on 8 pieces of Ascend 910 NPU using graph mode.
  • Top-1 and Top-5: Accuracy reported on the validation set of ImageNet-1K.

Quick Start

Preparation

Installation

Please refer to the installation instruction in MindCV.

Dataset Preparation

Please download the ImageNet-1K dataset for model training and validation.

Training

  • Distributed Training

It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run

# distributed training on multiple GPU/Ascend devices
mpirun -n 8 python train.py --config configs/mobilevit/mobilevit_xx_small_ascend.yaml --data_dir /path/to/imagenet

If the script is executed by the root user, the --allow-run-as-root parameter must be added to mpirun.

Similarly, you can train the model on multiple GPU devices with the above mpirun command.

For detailed illustration of all hyper-parameters, please refer to config.py.

Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.

  • Standalone Training

If you want to train or finetune the model on a smaller dataset without distributed training, please run:

# standalone training on a CPU/GPU/Ascend device
python train.py --config configs/mobilevit/mobilevit_xx_small_ascend.yaml --data_dir /path/to/dataset --distribute False

Validation

To validate the accuracy of the trained model, you can use validate.py and parse the checkpoint path with --ckpt_path.

python validate.py -c configs/mobilevit/mobilevit_xx_small_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt

Deployment

Please refer to the deployment tutorial in MindCV.