forked from luosiallen/latent-consistency-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tungsten_model.py
157 lines (136 loc) · 4.49 KB
/
tungsten_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Tungsten model definition
Reference: https://github.com/tungsten-ai/tungstenkit
Before start building a model, download weights & pipeline definition:
$ git lfs install
$ git clone https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
"""
import os
import random
import sys
from typing import List
import torch
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from safetensors.torch import load_file
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from tungstenkit import BaseIO, Field, Image, Option, define_model
MODEL_DIR = "LCM_Dreamshaper_v7"
sys.path.append("LCM_Dreamshaper_v7")
from lcm_pipeline import LatentConsistencyModelPipeline
from lcm_scheduler import LCMScheduler
class Input(BaseIO):
prompt: str = Field(description="Input prompt")
image_dimensions: str = Option(
default="768x768",
description="Pixel dimensions of output image (width x height)",
choices=["512x512", "512x768", "768x512", "768x768"],
)
num_output_images: int = Option(
description="Number of output images",
le=4,
ge=1,
default=1,
)
seed: int = Option(
description="Random seed. Set as -1 to randomize the seed",
default=-1,
ge=-1,
le=4294967293,
)
num_inference_steps: int = Option(
description="Number of denoising steps", ge=1, le=50, default=4
)
guidence_scale: float = Option(
description="Scale for classifier-free guidance", ge=1, le=20, default=8
)
class Output(BaseIO):
images: List[Image]
@define_model(
input=Input,
output=Output,
gpu=True,
system_packages=[
"libgl1-mesa-glx",
"libglib2.0-0",
],
python_packages=[
"torch",
"torchvision",
"accelerate",
"diffusers==0.21.4",
"transformers==4.34.1",
"opencv-python",
],
batch_size=1,
)
class LCMModel:
def setup(self):
"""Load model"""
# Initalize Diffusers Model:
vae = AutoencoderKL.from_pretrained(MODEL_DIR, subfolder="vae")
text_encoder = CLIPTextModel.from_pretrained(
MODEL_DIR, subfolder="text_encoder"
)
tokenizer = CLIPTokenizer.from_pretrained(MODEL_DIR, subfolder="tokenizer")
unet = UNet2DConditionModel.from_pretrained(
MODEL_DIR,
subfolder="unet",
device_map=None,
low_cpu_mem_usage=False,
local_files_only=True,
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
MODEL_DIR, subfolder="safety_checker"
)
feature_extractor = CLIPImageProcessor.from_pretrained(
MODEL_DIR, subfolder="feature_extractor"
)
# Initalize Scheduler:du
scheduler = LCMScheduler(
beta_start=0.00085,
beta_end=0.0120,
beta_schedule="scaled_linear",
prediction_type="epsilon",
)
# Replace the unet with LCM:
lcm_unet_ckpt = os.path.join(MODEL_DIR, "LCM_Dreamshaper_v7_4k.safetensors")
ckpt = load_file(lcm_unet_ckpt)
unet.load_state_dict(ckpt, strict=False)
# LCM Pipeline:
self.pipe = LatentConsistencyModelPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.pipe.to("cuda")
def predict(self, inputs: List[Input]):
"""Run batch prediction"""
input = inputs[0] # batch_size == 1
if input.seed == -1:
input.seed = random.randrange(4294967294)
print(f"Using seed {input.seed}\n")
torch.random.manual_seed(input.seed)
width, height = input.image_dimensions.split("x")
width, height = int(width), int(height)
output_pil_images = self.pipe(
prompt=input.prompt,
width=width,
height=height,
guidance_scale=input.guidence_scale,
num_inference_steps=input.num_inference_steps,
num_images_per_prompt=input.num_output_images,
lcm_origin_steps=50,
output_type="pil",
).images
return [
Output(
images=[Image.from_pil_image(pil_img) for pil_img in output_pil_images]
)
]