forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetafile.yml
201 lines (200 loc) · 8.75 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
Collections:
- Name: Swin-Transformer
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
- Weight Decay
Training Resources: 16x V100 GPUs
Epochs: 300
Batch Size: 1024
Architecture:
- Shift Window Multihead Self Attention
Paper:
URL: https://arxiv.org/abs/2103.14030
Title: "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"
README: configs/swin_transformer/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/swin_transformer.py#L176
Version: v0.15.0
Models:
- Name: swin-tiny_16xb64_in1k
Metadata:
FLOPs: 4360000000
Parameters: 28290000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.18
Top 5 Accuracy: 95.61
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
Config: configs/swin_transformer/swin-tiny_16xb64_in1k.py
- Name: swin-small_16xb64_in1k
Metadata:
FLOPs: 8520000000
Parameters: 49610000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.02
Top 5 Accuracy: 96.29
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth
Config: configs/swin_transformer/swin-small_16xb64_in1k.py
- Name: swin-base_16xb64_in1k
Metadata:
FLOPs: 15140000000
Parameters: 87770000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.36
Top 5 Accuracy: 96.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth
Config: configs/swin_transformer/swin-base_16xb64_in1k.py
- Name: swin-tiny_3rdparty_in1k
Metadata:
FLOPs: 4360000000
Parameters: 28290000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 81.18
Top 5 Accuracy: 95.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_tiny_patch4_window7_224-160bb0a5.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-tiny_16xb64_in1k.py
- Name: swin-small_3rdparty_in1k
Metadata:
FLOPs: 8520000000
Parameters: 49610000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.21
Top 5 Accuracy: 96.25
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_small_patch4_window7_224-cc7a01c9.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-small_16xb64_in1k.py
- Name: swin-base_3rdparty_in1k
Metadata:
FLOPs: 15140000000
Parameters: 87770000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.42
Top 5 Accuracy: 96.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window7_224-4670dd19.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-base_16xb64_in1k.py
- Name: swin-base_3rdparty_in1k-384
Metadata:
FLOPs: 44490000000
Parameters: 87900000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.49
Top 5 Accuracy: 96.95
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window12_384-02c598a4.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-base_16xb64_in1k-384px.py
- Name: swin-base_in21k-pre-3rdparty_in1k
Metadata:
FLOPs: 15140000000
Parameters: 87770000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.16
Top 5 Accuracy: 97.50
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window7_224_22kto1k-f967f799.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-base_16xb64_in1k.py
- Name: swin-base_in21k-pre-3rdparty_in1k-384
Metadata:
FLOPs: 44490000000
Parameters: 87900000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.44
Top 5 Accuracy: 98.05
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_base_patch4_window12_384_22kto1k-d59b0d1d.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-base_16xb64_in1k-384px.py
- Name: swin-large_in21k-pre-3rdparty_in1k
Metadata:
FLOPs: 34040000000
Parameters: 196530000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 86.24
Top 5 Accuracy: 97.88
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_large_patch4_window7_224_22kto1k-5f0996db.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-large_16xb64_in1k.py
- Name: swin-large_in21k-pre-3rdparty_in1k-384
Metadata:
FLOPs: 100040000000
Parameters: 196740000
In Collection: Swin-Transformer
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 87.25
Top 5 Accuracy: 98.25
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin_large_patch4_window12_384_22kto1k-0a40944b.pth
Converted From:
Weights: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth
Code: https://github.com/microsoft/Swin-Transformer/blob/777f6c66604bb5579086c4447efe3620344d95a9/models/swin_transformer.py#L458
Config: configs/swin_transformer/swin-large_16xb64_in1k-384px.py
- Name: swin-large_8xb8_cub-384px
Metadata:
FLOPs: 100040000000
Parameters: 195510000
In Collection: Swin-Transformer
Results:
- Dataset: CUB-200-2011
Metrics:
Top 1 Accuracy: 91.87
Task: Image Classification
Pretrain: https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-large_3rdparty_in21k-384px.pth
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin-large_8xb8_cub_384px_20220307-1bbaee6a.pth
Config: configs/swin_transformer/swin-large_8xb8_cub-384px.py