forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet50_8xb256-rsb-a1-600e_in1k.py
56 lines (51 loc) · 1.31 KB
/
resnet50_8xb256-rsb-a1-600e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
_base_ = [
'../_base_/models/resnet50.py',
'../_base_/datasets/imagenet_bs256_rsb_a12.py',
'../_base_/schedules/imagenet_bs2048_rsb.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
norm_cfg=dict(type='SyncBN', requires_grad=True),
drop_path_rate=0.05,
),
head=dict(
loss=dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
use_sigmoid=True,
)),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.2),
dict(type='CutMix', alpha=1.0)
]),
)
# dataset settings
train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True))
# schedule settings
optim_wrapper = dict(
optimizer=dict(weight_decay=0.01),
paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.),
)
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=595,
eta_min=1.0e-6,
by_epoch=True,
begin=5,
end=600)
]
train_cfg = dict(by_epoch=True, max_epochs=600)