forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
154 lines (145 loc) · 3.93 KB
/
mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
_base_ = [
'../_base_/datasets/imagenet_bs512_mocov3.py',
'../_base_/default_runtime.py',
]
# dataset settings
# the difference between ResNet50 and ViT pipeline is the `scale` in
# `RandomResizedCrop`, `scale=(0.08, 1.)` in ViT pipeline
view_pipeline1 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.08, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=1.),
dict(type='Solarize', thr=128, prob=0.),
dict(type='RandomFlip', prob=0.5),
]
view_pipeline2 = [
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.08, 1.),
backend='pillow'),
dict(
type='RandomApply',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
prob=0.8),
dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),
dict(
type='GaussianBlur',
magnitude_range=(0.1, 2.0),
magnitude_std='inf',
prob=0.1),
dict(type='Solarize', thr=128, prob=0.2),
dict(type='RandomFlip', prob=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiView',
num_views=[1, 1],
transforms=[view_pipeline1, view_pipeline2]),
dict(type='PackInputs')
]
train_dataloader = dict(batch_size=64, dataset=dict(pipeline=train_pipeline))
# model settings
temperature = 0.2
model = dict(
type='MoCoV3',
base_momentum=0.01,
backbone=dict(
type='MoCoV3ViT',
arch='large', # embed_dim = 1024
img_size=224,
patch_size=16,
stop_grad_conv1=True),
neck=dict(
type='NonLinearNeck',
in_channels=1024,
hid_channels=4096,
out_channels=256,
num_layers=3,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
head=dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=256,
hid_channels=4096,
out_channels=256,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
loss=dict(type='CrossEntropyLoss', loss_weight=2 * temperature),
temperature=temperature))
# optimizer
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
clip_grad=dict(max_norm=5.0, error_if_nonfinite=False),
optimizer=dict(type='AdamW', lr=2.4e-3, weight_decay=0.1))
find_unused_parameters = True
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=260,
by_epoch=True,
begin=40,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
# only keeps the latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
randomness = dict(seed=0)
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)