forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
201 lines (200 loc) · 8.19 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
Collections:
- Name: MoCoV3
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- LARS
Training Resources: 32x V100 GPUs
Architecture:
- ResNet
- ViT
- MoCo
Paper:
Title: An Empirical Study of Training Self-Supervised Vision Transformers
URL: https://arxiv.org/abs/2104.02057
README: configs/mocov3/README.md
Models:
- Name: mocov3_resnet50_8xb512-amp-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_20220927-f1144efa.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k.py
Downstream:
- resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
- Name: mocov3_resnet50_8xb512-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/mocov3_resnet50_8xb512-amp-coslr-300e_in1k_20220927-1e4f3304.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k.py
Downstream:
- resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
- Name: mocov3_resnet50_8xb512-amp-coslr-800e_in1k
Metadata:
Epochs: 800
Batch Size: 4096
FLOPs: 4109364224
Parameters: 68012160
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth
Config: configs/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k.py
Downstream:
- resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
- Name: resnet50_mocov3-100e-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.6
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-100e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-8f7d937e.pth
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: resnet50_mocov3-300e-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.8
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-300e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-d21ddac2.pth
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: resnet50_mocov3-800e-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4109464576
Parameters: 25557032
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.4
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/resnet50_linear-8xb128-coslr-90e_in1k/resnet50_linear-8xb128-coslr-90e_in1k_20220927-0e97a483.pth
Config: configs/mocov3/benchmarks/resnet50_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 4607954304
Parameters: 84266752
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k-224_20220826-08bc52f7.pth
Config: configs/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k.py
Downstream:
- vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
- Name: vit-small-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 4607954304
Parameters: 22050664
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.6
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-small-p16_16xb256-amp-coslr-300e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k/vit-small-p16_linear-8xb128-coslr-90e_in1k_20220826-376674ef.pth
Config: configs/mocov3/benchmarks/vit-small-p16_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 17581972224
Parameters: 215678464
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k-224_20220826-25213343.pth
Config: configs/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k.py
Downstream:
- vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
- vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
- Name: vit-base-p16_mocov3-pre_8xb64-coslr-150e_in1k
Metadata:
Epochs: 150
Batch Size: 512
FLOPs: 17581972224
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.0
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k/vit-base-p16_ft-8xb64-coslr-150e_in1k_20220826-f1e6c442.pth
Config: configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-150e_in1k.py
- Name: vit-base-p16_mocov3-pre_8xb128-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 1024
FLOPs: 17581972224
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.9
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-base-p16_16xb256-amp-coslr-300e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k/vit-base-p16_linear-8xb128-coslr-90e_in1k_20220826-83be7758.pth
Config: configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
- Name: mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 4096
FLOPs: 61603111936
Parameters: 652781568
Training Data: ImageNet-1k
In Collection: MoCoV3
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k-224_20220829-9b88a442.pth
Config: configs/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k.py
Downstream:
- vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
- Name: vit-large-p16_mocov3-pre_8xb64-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 512
FLOPs: 61603111936
Parameters: 304326632
Training Data: ImageNet-1k
In Collection: MoCoV3
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.7
Weights: https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_vit-large-p16_64xb64-amp-coslr-300e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k/vit-large-p16_ft-8xb64-coslr-100e_in1k_20220829-878a2f7f.pth
Config: configs/mocov3/benchmarks/vit-large-p16_8xb64-coslr-100e_in1k.py