forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathitpn-clip-b_hivit-base-p16_8xb256-amp-coslr-300e_in1k.py
84 lines (77 loc) · 2.18 KB
/
itpn-clip-b_hivit-base-p16_8xb256-amp-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
_base_ = [
'../_base_/datasets/imagenet_bs256_itpn.py',
'../_base_/default_runtime.py',
]
model = dict(
type='iTPN',
backbone=dict(
type='iTPNHiViT',
arch='base',
drop_path_rate=0.0,
rpe=True,
layer_scale_init_value=0.1,
reconstruction_type='clip'),
neck=dict(
type='iTPNPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=512,
mlp_ratio=4.,
reconstruction_type='clip',
# transformer pyramid
fpn_dim=256,
fpn_depth=2,
num_outs=3,
),
head=dict(
type='iTPNClipHead',
embed_dims=512,
num_embed=512,
loss=dict(type='CosineSimilarityLoss')),
target_generator=dict(
type='CLIPGenerator',
tokenizer_path= # noqa
'https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/clip_vit_base_16.pth.tar' # noqa
),
)
# optimizer wrapper
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
# betas: (0.9, 0.98) for 300 epochs and (0.9, 0.999) for 1600 epochs.
optimizer=dict(
type='AdamW', lr=1.5e-3, betas=(0.9, 0.98), weight_decay=0.05),
clip_grad=dict(max_norm=3.0),
paramwise_cfg=dict(
custom_keys={
'.norm': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.gamma': dict(decay_mult=0.0),
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
eta_min=1e-5,
by_epoch=True,
begin=10,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
find_unused_parameters = True
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)