forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convnext-v2-huge_32xb32_in1k-512px.py
54 lines (47 loc) · 1.46 KB
/
convnext-v2-huge_32xb32_in1k-512px.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
_base_ = [
'../_base_/models/convnext_v2/huge.py',
'../_base_/datasets/imagenet_bs64_swin_384.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py',
]
# dataset setting
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=512,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=512, backend='pillow', interpolation='bicubic'),
dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=32, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(
optimizer=dict(lr=2.5e-3),
clip_grad=None,
)
# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=1e-3,
by_epoch=True,
end=20,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(type='CosineAnnealingLR', eta_min=1e-5, by_epoch=True, begin=20)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
# runtime setting
custom_hooks = [dict(type='EMAHook', momentum=1e-4, priority='ABOVE_NORMAL')]