forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_handler.py
81 lines (63 loc) · 3.03 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (C) 2018-2022 Intel Corporation
#
# SPDX-License-Identifier: MIT
import math
import numpy
import os
from scipy.optimize import linear_sum_assignment
from scipy.spatial.distance import euclidean, cosine
from model_loader import ModelLoader
class ModelHandler:
def __init__(self):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/intel/person-reidentification-retail-0277/FP32"))
model_xml = os.path.join(base_dir, "person-reidentification-retail-0277.xml")
model_bin = os.path.join(base_dir, "person-reidentification-retail-0277.bin")
self.model = ModelLoader(model_xml, model_bin)
def infer(self, image0, boxes0, image1, boxes1, threshold, distance):
similarity_matrix = self._compute_similarity_matrix(image0,
boxes0, image1, boxes1, distance)
row_idx, col_idx = linear_sum_assignment(similarity_matrix)
results = [-1] * len(boxes0)
for idx0, idx1 in zip(row_idx, col_idx):
if similarity_matrix[idx0, idx1] <= threshold:
results[idx0] = int(idx1)
return results
def _match_boxes(self, box0, box1, distance):
cx0 = (box0["points"][0] + box0["points"][2]) / 2
cy0 = (box0["points"][1] + box0["points"][3]) / 2
cx1 = (box1["points"][0] + box1["points"][2]) / 2
cy1 = (box1["points"][1] + box1["points"][3]) / 2
is_good_distance = euclidean([cx0, cy0], [cx1, cy1]) <= distance
is_same_label = box0["label_id"] == box1["label_id"]
return is_good_distance and is_same_label
def _match_crops(self, crop0, crop1):
embedding0 = self.model.infer(crop0)
embedding1 = self.model.infer(crop1)
embedding0 = embedding0.reshape(embedding0.size)
embedding1 = embedding1.reshape(embedding1.size)
return cosine(embedding0, embedding1)
def _compute_similarity_matrix(self, image0, boxes0, image1, boxes1,
distance):
def _int(number, upper):
return math.floor(numpy.clip(number, 0, upper - 1))
DISTANCE_INF = 1000.0
matrix = numpy.full([len(boxes0), len(boxes1)], DISTANCE_INF, dtype=float)
for row, box0 in enumerate(boxes0):
w0, h0 = image0.size
xtl0, xbr0, ytl0, ybr0 = (
_int(box0["points"][0], w0), _int(box0["points"][2], w0),
_int(box0["points"][1], h0), _int(box0["points"][3], h0)
)
for col, box1 in enumerate(boxes1):
w1, h1 = image1.size
xtl1, xbr1, ytl1, ybr1 = (
_int(box1["points"][0], w1), _int(box1["points"][2], w1),
_int(box1["points"][1], h1), _int(box1["points"][3], h1)
)
if not self._match_boxes(box0, box1, distance):
continue
crop0 = image0.crop((xtl0, ytl0, xbr0, ybr0))
crop1 = image1.crop((xtl1, ytl1, xbr1, ybr1))
matrix[row][col] = self._match_crops(crop0, crop1)
return matrix