-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_answers.py
89 lines (62 loc) · 2.28 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Activation
import string
import keras
# TODO: fill out the function below that transforms the input series
# and window-size into a set of input/output pairs for use with our RNN model
def window_transform_series(series, window_size):
series_len = len(series)
in_out_pairs = series_len - window_size
# containers for input/output pairs
X = []
for i in range(in_out_pairs):
X.append(series[i:i + window_size])
y = []
y = series[window_size:]
# reshape each
X = np.asarray(X)
X.shape = (np.shape(X)[0:2])
y = np.asarray(y)
y.shape = (len(y), 1)
return X, y
# TODO: build an RNN to perform regression on our time series input/output data
def build_part1_RNN(window_size):
model = Sequential()
model.add(LSTM(5, input_shape=(window_size, 1)))
model.add(Dense(1, activation='tanh'))
return model
# TODO: return the text input with only ascii lowercase and the punctuation
# given below included.
def cleaned_text(text):
punctuation = ['!', ',', '.', ':', ';', '?']
alphabet = list(string.ascii_lowercase)
allowed_chars = set(punctuation + alphabet + [' '])
all_chars = set(text)
chars_to_remove = all_chars - allowed_chars
for char_to_remove in chars_to_remove:
text = text.replace(char_to_remove, ' ')
return text
# TODO: fill out the function below that transforms the input text and
# window-size into a set of input/output pairs for use with our RNN model
def window_transform_text(text, window_size, step_size):
text_len = len(text)
in_out_pairs = text_len - window_size
# containers for input/output pairs
inputs = []
outputs = []
for i in range(0, in_out_pairs, step_size):
inputs.append(text[i:i+window_size])
outputs.append(text[i+window_size])
return inputs, outputs
# TODO build the required RNN model:
# a single LSTM hidden layer with softmax activation,
# categorical_crossentropy loss
def build_part2_RNN(window_size, num_chars):
model = Sequential()
model.add(LSTM(200, input_shape=(window_size, num_chars)))
model.add(Dense(num_chars))
model.add(Activation('softmax'))
return model