-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path09-clustering.R
211 lines (162 loc) · 6.31 KB
/
09-clustering.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
## ---- warning=FALSE, message=FALSE----------------------
library(BiocFileCache)
bfc <- BiocFileCache()
raw.path <- bfcrpath(bfc, file.path(
"http://cf.10xgenomics.com/samples",
"cell-exp/2.1.0/pbmc4k/pbmc4k_raw_gene_bc_matrices.tar.gz"
))
untar(raw.path, exdir = file.path(tempdir(), "pbmc4k"))
library(DropletUtils)
library(Matrix)
fname <- file.path(tempdir(), "pbmc4k/raw_gene_bc_matrices/GRCh38")
sce.pbmc <- read10xCounts(fname, col.names = TRUE)
## ---- warning=FALSE, message=FALSE----------------------
# gene-annotation
library(scater)
rownames(sce.pbmc) <- uniquifyFeatureNames(
rowData(sce.pbmc)$ID, rowData(sce.pbmc)$Symbol
)
library(EnsDb.Hsapiens.v86)
location <- mapIds(EnsDb.Hsapiens.v86,
keys = rowData(sce.pbmc)$ID,
column = "SEQNAME", keytype = "GENEID"
)
# cell-detection
set.seed(100)
e.out <- emptyDrops(counts(sce.pbmc))
sce.pbmc <- sce.pbmc[, which(e.out$FDR <= 0.001)]
## ---- warning=FALSE, message=FALSE----------------------
# quality-control
stats <- perCellQCMetrics(sce.pbmc,
subsets = list(Mito = which(location == "MT"))
)
high.mito <- isOutlier(stats$subsets_Mito_percent,
type = "higher"
)
sce.pbmc <- sce.pbmc[, !high.mito]
# normalization
library(scran)
set.seed(1000)
clusters <- quickCluster(sce.pbmc)
sce.pbmc <- computeSumFactors(sce.pbmc, cluster = clusters)
sce.pbmc <- logNormCounts(sce.pbmc)
## ---- warning=FALSE, message=FALSE----------------------
# variance modelling
set.seed(1001)
dec.pbmc <- modelGeneVarByPoisson(sce.pbmc)
top.pbmc <- getTopHVGs(dec.pbmc, prop = 0.1)
## ---- warning=FALSE, message=FALSE----------------------
# dimensionality-reduction
set.seed(10000)
sce.pbmc <- denoisePCA(sce.pbmc,
subset.row = top.pbmc,
technical = dec.pbmc
)
set.seed(100000)
sce.pbmc <- runTSNE(sce.pbmc, dimred = "PCA")
set.seed(1000000)
sce.pbmc <- runUMAP(sce.pbmc, dimred = "PCA")
## ---- warning=FALSE, message=FALSE----------------------
library(scran)
# Build graph using k = 10 nearest neighbours in PCA-space
g <- buildSNNGraph(sce.pbmc, k = 10, use.dimred = "PCA")
# Identify communities using the Walktrap method
clust <- igraph::cluster_walktrap(g)$membership
## ---- warning=FALSE, message=FALSE, , fig.dim = c(6, 4)----
# Visualise clusters on t-SNE plot
library(scater)
sce.pbmc$cluster <- factor(clust)
plotReducedDim(sce.pbmc, "TSNE", colour_by = "cluster")
## ---- warning=FALSE, message=FALSE----------------------
library(scran)
# Build graph using k = 50 nearest neighbours in PCA-space
g50 <- buildSNNGraph(sce.pbmc, k = 50, use.dimred = "PCA")
# Identify communities using the Walktrap method
clust50 <- igraph::cluster_walktrap(g50)$membership
## ---- warning=FALSE, message=FALSE, , fig.dim = c(6, 4)----
# Visualise clusters on t-SNE plot
library(scater)
sce.pbmc$cluster50 <- factor(clust50)
plotReducedDim(sce.pbmc, "TSNE", colour_by = "cluster50")
## ---- warning=FALSE, message=FALSE , fig.dim = c(6, 4)----
# Jaccard-based weights followed by Louvain clustering
# aka 'Seurat-style' clustering
g2 <- buildSNNGraph(sce.pbmc, k = 10, use.dimred = "PCA", type = "jaccard")
clust2 <- igraph::cluster_louvain(g2)$membership
sce.pbmc$cluster2 <- factor(clust2)
plotReducedDim(sce.pbmc, "TSNE", colour_by = "cluster2")
## ---- fig.cap = "Estilo scran vs estilo Seurat.", fig.width=10----
library("patchwork")
plotReducedDim(sce.pbmc, "TSNE", colour_by = "cluster") +
plotReducedDim(sce.pbmc, "TSNE", colour_by = "cluster2")
## ---- eval = FALSE--------------------------------------
## g.num <- buildSNNGraph(sce.pbmc, use.dimred = "PCA", type = "number")
## g.jaccard <- buildSNNGraph(sce.pbmc, use.dimred = "PCA", type = "jaccard")
## g.none <- buildKNNGraph(sce.pbmc, use.dimred = "PCA")
## ---- eval = FALSE--------------------------------------
## clust.louvain <- igraph::cluster_louvain(g)$membership
## clust.infomap <- igraph::cluster_infomap(g)$membership
## clust.fast <- igraph::cluster_fast_greedy(g)$membership
## clust.labprop <- igraph::cluster_label_prop(g)$membership
## clust.eigen <- igraph::cluster_leading_eigen(g)$membership
## ---- warning=FALSE, message=FALSE----------------------
library(bluster)
# obteniendo la métrica de modularidad
ratio <- pairwiseModularity(g, clust, as.ratio = TRUE)
dim(ratio)
## ---- warning=FALSE, message=FALSE, fig.dim = c(6, 4)----
library(pheatmap)
pheatmap(log2(ratio + 1),
cluster_rows = FALSE,
cluster_cols = FALSE,
color = colorRampPalette(c("white", "blue"))(100)
)
## ---- warning=FALSE, message=FALSE----------------------
myClusterFUN <- function(x) {
g <- buildSNNGraph(x, use.dimred = "PCA", type = "jaccard")
igraph::cluster_louvain(g)$membership
}
originals <- myClusterFUN(sce.pbmc)
set.seed(0010010100)
coassign <- bootstrapStability(sce.pbmc,
FUN = myClusterFUN,
clusters = originals
)
## ---- warning=FALSE, message=FALSE , fig.dim = c(6, 4)----
pheatmap(coassign,
cluster_row = FALSE, cluster_col = FALSE,
color = rev(viridis::magma(100))
)
## ---- warning=FALSE, message=FALSE , fig.dim = c(6, 4)----
g.full <- buildSNNGraph(sce.pbmc, use.dimred = "PCA")
clust.full <- igraph::cluster_walktrap(g.full)$membership
sce.pbmc$clust.full <- factor(clust.full)
plotExpression(sce.pbmc,
features = c("CD3E", "CCR7", "CD69", "CD44"),
x = "clust.full", colour_by = "clust.full"
)
## ---- warning=FALSE, message=FALSE----------------------
# Repeating modelling and PCA on the subset of cells we have
# identified as memory T-cells (cluster 6).
memory <- 10
sce.memory <- sce.pbmc[, clust.full == memory]
dec.memory <- modelGeneVar(sce.memory)
sce.memory <- denoisePCA(sce.memory,
technical = dec.memory,
subset.row = getTopHVGs(dec.memory, prop = 0.1)
)
# Repeating clustering on the subset.
g.memory <- buildSNNGraph(sce.memory, use.dimred = "PCA")
clust.memory <- igraph::cluster_walktrap(g.memory)$membership
sce.memory$clust.memory <- factor(clust.memory)
## ---- warning=FALSE, message=FALSE, fig.dim = c(6, 4)----
plotExpression(sce.memory,
features = c("CD8A", "CD4"),
x = "clust.memory"
)
## -------------------------------------------------------
## Información de la sesión de R
Sys.time()
proc.time()
options(width = 120)
sessioninfo::session_info()