-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathposform.tex
187 lines (167 loc) · 5.27 KB
/
posform.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
\section{Positive formula}\label{positive-formula}
A \emph{positive formula} is a formula \(P\) such that \(P\limp\oc P\)
(thus a \href{https://en.wikipedia.org/wiki/F-coalgebra}{coalgebra} for the
\href{https://en.wikipedia.org/wiki/Comonad}{comonad} \(\oc\)). As a consequence \(P\) and
\(\oc P\) are \hyperref[equivalences]{equivalent}.
A formula \(P\) is positive if and only if \(P\orth\) is
\hyperref[negative-formula]{negative}.
\subsection{Positive connectives}\label{positive-connectives}
A connective \(c\) of arity \(n\) is \emph{positive} if for any positive
formulas \(P_1\),...,\(P_n\), \(c(P_1,\dots,P_n)\) is positive.
\begin{proposition}[Positive connectives]
$\tens$, $\one$, $\plus$, $\zero$, $\oc$ and $\exists$ are positive connectives.
\end{proposition}
\begin{proof}\
\begin{prooftree}
\AxRule{P_2\vdash\oc{P_2}}
\AxRule{P_1\vdash\oc{P_1}}
\LabelRule{\rulename{ax}}
\NulRule{P_1\vdash P_1}
\LabelRule{\rulename{ax}}
\NulRule{P_2\vdash P_2}
\LabelRule{\tens R}
\BinRule{P_1,P_2\vdash P_1\tens P_2}
\LabelRule{\oc d L}
\UnaRule{\oc{P_1},P_2\vdash P_1\tens P_2}
\LabelRule{\oc d L}
\UnaRule{\oc{P_1},\oc{P_2}\vdash P_1\tens P_2}
\LabelRule{\oc R}
\UnaRule{\oc{P_1},\oc{P_2}\vdash\oc{(P_1\tens P_2)}}
\LabelRule{\rulename{cut}}
\BinRule{P_1,\oc{P_2}\vdash\oc{(P_1\tens P_2)}}
\LabelRule{\rulename{cut}}
\BinRule{P_1,P_2\vdash\oc{(P_1\tens P_2)}}
\LabelRule{\tens L}
\UnaRule{P_1\tens P_2\vdash\oc{(P_1\tens P_2)}}
\end{prooftree}
\begin{prooftree}
\LabelRule{\one R}
\NulRule{\vdash\one}
\LabelRule{\oc R}
\UnaRule{\vdash\oc{\one}}
\LabelRule{\one L}
\UnaRule{\one\vdash\oc{\one}}
\end{prooftree}
\begin{prooftree}
\AxRule{P_1\vdash\oc{P_1}}
\LabelRule{\rulename{ax}}
\NulRule{P_1\vdash P_1}
\LabelRule{\plus_1 R}
\UnaRule{P_1\vdash P_1\plus P_2}
\LabelRule{\oc d L}
\UnaRule{\oc{P_1}\vdash P_1\plus P_2}
\LabelRule{\oc R}
\UnaRule{\oc{P_1}\vdash\oc{(P_1\plus P_2)}}
\LabelRule{\rulename{cut}}
\BinRule{P_1\vdash\oc{(P_1\plus P_2)}}
\AxRule{P_2\vdash\oc{P_2}}
\LabelRule{\rulename{ax}}
\NulRule{P_2\vdash P_2}
\LabelRule{\plus_2 R}
\UnaRule{P_2\vdash P_1\plus P_2}
\LabelRule{\oc d L}
\UnaRule{\oc{P_2}\vdash P_1\plus P_2}
\LabelRule{\oc R}
\UnaRule{\oc{P_2}\vdash\oc{(P_1\plus P_2)}}
\LabelRule{\rulename{cut}}
\BinRule{P_2\vdash\oc{(P_1\plus P_2)}}
\LabelRule{\plus L}
\BinRule{P_1\plus P_2\vdash\oc{(P_1\plus P_2)}}
\end{prooftree}
\begin{prooftree}
\LabelRule{\zero L}
\NulRule{\zero\vdash\oc{\zero}}
\end{prooftree}
\begin{prooftree}
\LabelRule{\rulename{ax}}
\NulRule{\oc{P}\vdash\oc{P}}
\LabelRule{\oc R}
\UnaRule{\oc{P}\vdash\oc{\oc{P}}}
\end{prooftree}
\begin{prooftree}
\AxRule{P\vdash\oc{P}}
\LabelRule{\rulename{ax}}
\NulRule{P\vdash P}
\LabelRule{\exists R}
\UnaRule{P\vdash \exists\xi P}
\LabelRule{\oc d L}
\UnaRule{\oc{P}\vdash \exists\xi P}
\LabelRule{\oc R}
\UnaRule{\oc{P}\vdash\oc{\exists\xi P}}
\LabelRule{\rulename{cut}}
\BinRule{P\vdash\oc{\exists\xi P}}
\LabelRule{\exists L}
\UnaRule{\exists\xi P\vdash\oc{\exists\xi P}}
\end{prooftree}
\end{proof}
More generally, \(\oc A\) is positive for any formula \(A\).
The notion of positive connective is related with but different from the
notion of \hyperref[synchrony]{synchronous connective}.
\subsection{Generalized structural rules}\label{generalized-structural-rules-pos}
Positive formulas admit generalized left structural rules corresponding
to a structure of \href{https://en.wikipedia.org/wiki/Comonoid}{\(\tens\)-comonoid}:
\(P\limp P\tens P\) and \(P\limp\one\). The following rules are derivable:
\begin{equation*}
\AxRule{\Gamma,P,P\vdash\Delta}
\LabelRule{+ c L}
\UnaRule{\Gamma,P\vdash\Delta}
\DisplayProof
\qquad\qquad
\AxRule{\Gamma\vdash\Delta}
\LabelRule{+ w L}
\UnaRule{\Gamma,P\vdash\Delta}
\DisplayProof
\end{equation*}
\begin{proof}
\begin{equation*}
\AxRule{P\vdash\oc{P}}
\AxRule{\Gamma,P,P\vdash\Delta}
\LabelRule{\oc L}
\UnaRule{\Gamma,P,\oc P\vdash\Delta}
\LabelRule{\oc L}
\UnaRule{\Gamma,\oc P,\oc P\vdash\Delta}
\LabelRule{\oc c L}
\UnaRule{\Gamma,\oc P\vdash\Delta}
\LabelRule{\rulename{cut}}
\BinRule{\Gamma,P\vdash\Delta}
\DisplayProof
\qquad\qquad
\AxRule{P\vdash\oc{P}}
\AxRule{\Gamma\vdash\Delta}
\LabelRule{\oc w L}
\UnaRule{\Gamma,\oc P\vdash\Delta}
\LabelRule{\rulename{cut}}
\BinRule{\Gamma,P\vdash\Delta}
\DisplayProof
\end{equation*}
\end{proof}
Positive formulas are also acceptable in the left-hand side context of
the promotion rule. The following rule is derivable:
\begin{prooftree}
\AxRule{\oc\Gamma,P_1,\dots,P_n\vdash A,\wn\Delta}
\LabelRule{+ \oc R}
\UnaRule{\oc\Gamma,P_1,\dots,P_n\vdash \oc{A},\wn\Delta}
\end{prooftree}
\begin{proof}\
\begin{prooftree}
\AxRule{P_1\vdash\oc{P_1}}
\AxRule{P_n\vdash\oc{P_n}}
\AxRule{\oc\Gamma,P_1,\dots,P_n\vdash A,\wn\Delta}
\LabelRule{\oc L}
\UnaRule{\oc\Gamma,P_1,\dots,P_{n-1},\oc{P_n}\vdash A,\wn\Delta}
\VdotsRule{}{\oc\Gamma,P_1,\oc{P_2},\dots,\oc{P_n}\vdash A,\wn\Delta}
\LabelRule{\oc L}
\UnaRule{\oc\Gamma,\oc{P_1},\dots,\oc{P_n}\vdash A,\wn\Delta}
\LabelRule{\oc R}
\UnaRule{\oc\Gamma,\oc{P_1},\dots,\oc{P_n}\vdash \oc{A},\wn\Delta}
\LabelRule{\rulename{cut}}
\BinRule{\oc\Gamma,\oc{P_1},\dots,\oc{P_{n-1}},P_n\vdash \oc{A},\wn\Delta}
\VdotsRule{}{\oc\Gamma,\oc{P_1},P_2,\dots,P_n\vdash \oc{A},\wn\Delta}
\LabelRule{\rulename{cut}}
\BinRule{\oc\Gamma,P_1,\dots,P_n\vdash \oc{A},\wn\Delta}
\end{prooftree}
\end{proof}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: