-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrastive_loss.py
62 lines (48 loc) · 2.67 KB
/
contrastive_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch.nn.functional as F
import torch
import torch.nn as nn
import numpy as np
import networkx as nx
from sklearn.preprocessing import normalize
from torch.autograd import Variable
tau = 0.65
num_negative_samples_network = 10
class ContrastiveLoss(nn.Module):
def __init__(self):
super(ContrastiveLoss, self).__init__()
self.agg_mi_score = torch.vmap(self.compute_mutual_info_score)
def compute_mutual_info_score(self, embedding, positive_example, all_samples, weight_matrix=None):
if weight_matrix != None:
transformed_embedding = torch.matmul(embedding,weight_matrix).detach()
numerator = torch.matmul(transformed_embedding, positive_example.t())/tau
denominator = torch.stack([torch.matmul(transformed_embedding,selected_feat)/tau \
for selected_feat in all_samples],dim=0)
denominator_sum = torch.logsumexp(denominator, dim=0)
else:
numerator = torch.matmul(embedding.detach(), positive_example.t())/tau
denominator = torch.stack([torch.matmul(embedding.detach(), selected_feat.t())/tau \
for selected_feat in all_samples], dim=0)
denominator_sum = torch.logsumexp(denominator, dim=0)
score = denominator_sum - numerator
return score
def network_stucture_loss(self, embeddings, negative_embs, community_pos_options, iter_n):
loss_sums = []
num_samples = len(embeddings)
nodes = np.array(list(range(num_samples)))
positive_example_ind = community_pos_options[nodes][:,iter_n-1]
positive_examples = torch.unsqueeze(embeddings[positive_example_ind],-1).permute(0,-1, 1)
all_negatives = []
for sample in range(num_negative_samples_network):
negative_example_ind = np.random.choice(list(range(len(negative_embs))), size=num_samples) # repetitions possible, no way around it!
neg_examples = negative_embs[negative_example_ind].t()
all_negatives.append(neg_examples)
all_negatives = torch.stack(all_negatives).permute(2,0,1)
all_samples = torch.hstack([positive_examples, all_negatives])
loss_sums = torch.squeeze(self.agg_mi_score(embeddings, positive_examples, all_samples),-1)
sum_loss = loss_sums.mean()
return sum_loss
def forward(self, embeddings, community_pos_options, negative_embs, iter_n, node_similarity_weight=None):
community_membership_loss = self.network_stucture_loss(embeddings, negative_embs, \
community_pos_options, iter_n)
community_membership_loss = Variable(community_membership_loss, requires_grad=True)
return community_membership_loss