Skip to content

Latest commit

 

History

History
106 lines (83 loc) · 20 KB

README.md

File metadata and controls

106 lines (83 loc) · 20 KB

SlowOnly

Introduction

@inproceedings{feichtenhofer2019slowfast,
  title={Slowfast networks for video recognition},
  author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  pages={6202--6211},
  year={2019}
}

Model Zoo

Kinetics-400

config resolution gpus backbone pretrain top1 acc top5 acc inference_time(video/s) gpu_mem(M) ckpt log json
slowonly_r50_4x16x1_256e_kinetics400_rgb short-side 256 8x4 ResNet50 None 72.76 90.51 x 3168 ckpt log json
slowonly_r50_video_4x16x1_256e_kinetics400_rgb short-side 320 8x2 ResNet50 None 72.90 90.82 x 8472 ckpt log json
slowonly_r50_8x8x1_256e_kinetics400_rgb short-side 256 8x4 ResNet50 None 74.42 91.49 x 5820 ckpt log json
slowonly_r50_4x16x1_256e_kinetics400_rgb short-side 320 8x2 ResNet50 None 73.02 90.77 4.0 (40x3 frames) 3168 ckpt log json
slowonly_r50_8x8x1_256e_kinetics400_rgb short-side 320 8x3 ResNet50 None 74.93 91.92 2.3 (80x3 frames) 5820 ckpt log json
slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb short-side 320 8x2 ResNet50 ImageNet 73.39 91.12 x 3168 ckpt log json
slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb short-side 320 8x4 ResNet50 ImageNet 75.55 92.04 x 5820 ckpt log json
slowonly_r50_4x16x1_256e_kinetics400_flow short-side 320 8x2 ResNet50 ImageNet 61.79 83.62 x 8450 ckpt log json
slowonly_r50_8x8x1_196e_kinetics400_flow short-side 320 8x4 ResNet50 ImageNet 65.76 86.25 x 8455 ckpt log json

Kinetics-400 Data Benchmark

In data benchmark, we compare two different data preprocessing methods: (1) Resize video to 340x256, (2) Resize the short edge of video to 320px, (3) Resize the short edge of video to 256px.

config resolution gpus backbone Input pretrain top1 acc top5 acc testing protocol ckpt log json
slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb 340x256 8x2 ResNet50 4x16 None 71.61 90.05 10 clips x 3 crops ckpt log json
slowonly_r50_randomresizedcrop_320p_4x16x1_256e_kinetics400_rgb short-side 320 8x2 ResNet50 4x16 None 73.02 90.77 10 clips x 3 crops ckpt log json
slowonly_r50_randomresizedcrop_256p_4x16x1_256e_kinetics400_rgb short-side 256 8x4 ResNet50 4x16 None 72.76 90.51 10 clips x 3 crops ckpt log json

Kinetics-400 OmniSource Experiments

config resolution backbone pretrain w. OmniSource top1 acc top5 acc ckpt log json
slowonly_r50_4x16x1_256e_kinetics400_rgb short-side 320 ResNet50 None 73.0 90.8 ckpt log json
x x ResNet50 None ✔️ 76.8 92.5 ckpt x x
slowonly_r101_8x8x1_196e_kinetics400_rgb x ResNet101 None 76.5 92.7 ckpt x x
x x ResNet101 None ✔️ 80.4 94.4 ckpt x x

Kinetics-600

config resolution gpus backbone pretrain top1 acc top5 acc ckpt log json
slowonly_r50_video_8x8x1_256e_kinetics600_rgb short-side 256 8x4 ResNet50 None 77.5 93.7 ckpt log json

Kinetics-700

config resolution gpus backbone pretrain top1 acc top5 acc ckpt log json
slowonly_r50_video_8x8x1_256e_kinetics700_rgb short-side 256 8x4 ResNet50 None 65.0 86.1 ckpt log json

GYM99

config resolution gpus backbone pretrain top1 acc mean class acc ckpt log json
slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb short-side 256 8x2 ResNet50 ImageNet 79.3 70.2 ckpt log json
slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow short-side 256 8x2 ResNet50 Kinetics 80.3 71.0 ckpt log json
1: 1 Fusion 83.7 74.8

Notes:

  1. The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs * 2 video/gpu and lr=0.08 for 16 GPUs * 4 video/gpu.
  2. The inference_time is got by this benchmark script, where we use the sampling frames strategy of the test setting and only care about the model inference time, not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.

For more details on data preparation, you can refer to Kinetics400 in Data Preparation.

Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train SlowOnly model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
    --work-dir work_dirs/slowonly_r50_4x16x1_256e_kinetics400_rgb \
    --validate --seed 0 --deterministic

For more details, you can refer to Training setting part in getting_started.

Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test SlowOnly model on Kinetics-400 dataset and dump the result to a json file.

python tools/test.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
    checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
    --out result.json --average-clips=prob

For more details, you can refer to Test a dataset part in getting_started.