diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.caffemodel b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.caffemodel deleted file mode 100644 index a555f77..0000000 Binary files a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.caffemodel and /dev/null differ diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.prototxt b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.prototxt deleted file mode 100644 index 8dbbc91..0000000 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m1.prototxt +++ /dev/null @@ -1,387 +0,0 @@ -layer { - name: "data" - type: "Input" - top: "data" - input_param { - shape { - dim: 1 - dim: 3 - dim: 224 - dim: 224 - } - } -} -layer { - name: "Conv_0" - type: "Convolution" - bottom: "data" - top: "input.3" - convolution_param { - num_output: 32 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_1" - type: "ReLU" - bottom: "input.3" - top: "onnx::Conv_84" -} -layer { - name: "Conv_2" - type: "Convolution" - bottom: "onnx::Conv_84" - top: "input.11" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_3" - type: "ReLU" - bottom: "input.11" - top: "onnx::Conv_87" -} -layer { - name: "Conv_4" - type: "Convolution" - bottom: "onnx::Conv_87" - top: "input.19" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_5" - type: "ReLU" - bottom: "input.19" - top: "onnx::Conv_90" -} -layer { - name: "Conv_6" - type: "Convolution" - bottom: "onnx::Conv_90" - top: "input.27" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_7" - type: "ReLU" - bottom: "input.27" - top: "onnx::Conv_93" -} -layer { - name: "Conv_8" - type: "Convolution" - bottom: "onnx::Conv_93" - top: "input.35" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_9" - type: "ReLU" - bottom: "input.35" - top: "onnx::Conv_96" -} -layer { - name: "Conv_10" - type: "Convolution" - bottom: "onnx::Conv_96" - top: "input.43" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_11" - type: "ReLU" - bottom: "input.43" - top: "onnx::MaxPool_99" -} -layer { - name: "MaxPool_12" - type: "Pooling" - bottom: "onnx::MaxPool_99" - top: "input.47" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_13" - type: "Convolution" - bottom: "input.47" - top: "input.55" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_14" - type: "ReLU" - bottom: "input.55" - top: "onnx::Conv_103" -} -layer { - name: "Conv_15" - type: "Convolution" - bottom: "onnx::Conv_103" - top: "input.63" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_16" - type: "ReLU" - bottom: "input.63" - top: "onnx::Conv_106" -} -layer { - name: "Conv_17" - type: "Convolution" - bottom: "onnx::Conv_106" - top: "input.71" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_18" - type: "ReLU" - bottom: "input.71" - top: "onnx::Conv_109" -} -layer { - name: "Conv_19" - type: "Convolution" - bottom: "onnx::Conv_109" - top: "input.79" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_20" - type: "ReLU" - bottom: "input.79" - top: "onnx::MaxPool_112" -} -layer { - name: "MaxPool_21" - type: "Pooling" - bottom: "onnx::MaxPool_112" - top: "input.83" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_22" - type: "Convolution" - bottom: "input.83" - top: "input.91" - convolution_param { - num_output: 1024 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_23" - type: "ReLU" - bottom: "input.91" - top: "onnx::Conv_116" -} -layer { - name: "Conv_24" - type: "Convolution" - bottom: "onnx::Conv_116" - top: "input.99" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_25" - type: "ReLU" - bottom: "input.99" - top: "onnx::Conv_119" -} -layer { - name: "Conv_26" - type: "Convolution" - bottom: "onnx::Conv_119" - top: "input.107" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_27" - type: "ReLU" - bottom: "input.107" - top: "onnx::MaxPool_122" -} -layer { - name: "MaxPool_28" - type: "Pooling" - bottom: "onnx::MaxPool_122" - top: "input.111" - pooling_param { - pool: MAX - kernel_h: 11 - kernel_w: 11 - stride_h: 11 - stride_w: 11 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Reshape_29" - type: "Flatten" - bottom: "input.111" - top: "input.115" -} -layer { - name: "Gemm_30" - type: "InnerProduct" - bottom: "input.115" - top: "pred" - inner_product_param { - num_output: 1000 - bias_term: true - } -} - diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.caffemodel b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.caffemodel deleted file mode 100644 index 8c5ddc2..0000000 Binary files a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.caffemodel and /dev/null differ diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.prototxt b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.prototxt deleted file mode 100644 index a1fd42b..0000000 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/1.5m/simv1_1.5m_m2.prototxt +++ /dev/null @@ -1,387 +0,0 @@ -layer { - name: "data" - type: "Input" - top: "data" - input_param { - shape { - dim: 1 - dim: 3 - dim: 224 - dim: 224 - } - } -} -layer { - name: "Conv_0" - type: "Convolution" - bottom: "data" - top: "input.3" - convolution_param { - num_output: 32 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_1" - type: "ReLU" - bottom: "input.3" - top: "onnx::Conv_84" -} -layer { - name: "Conv_2" - type: "Convolution" - bottom: "onnx::Conv_84" - top: "input.11" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_3" - type: "ReLU" - bottom: "input.11" - top: "onnx::Conv_87" -} -layer { - name: "Conv_4" - type: "Convolution" - bottom: "onnx::Conv_87" - top: "input.19" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_5" - type: "ReLU" - bottom: "input.19" - top: "onnx::Conv_90" -} -layer { - name: "Conv_6" - type: "Convolution" - bottom: "onnx::Conv_90" - top: "input.27" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_7" - type: "ReLU" - bottom: "input.27" - top: "onnx::Conv_93" -} -layer { - name: "Conv_8" - type: "Convolution" - bottom: "onnx::Conv_93" - top: "input.35" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_9" - type: "ReLU" - bottom: "input.35" - top: "onnx::Conv_96" -} -layer { - name: "Conv_10" - type: "Convolution" - bottom: "onnx::Conv_96" - top: "input.43" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_11" - type: "ReLU" - bottom: "input.43" - top: "onnx::MaxPool_99" -} -layer { - name: "MaxPool_12" - type: "Pooling" - bottom: "onnx::MaxPool_99" - top: "input.47" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_13" - type: "Convolution" - bottom: "input.47" - top: "input.55" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_14" - type: "ReLU" - bottom: "input.55" - top: "onnx::Conv_103" -} -layer { - name: "Conv_15" - type: "Convolution" - bottom: "onnx::Conv_103" - top: "input.63" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_16" - type: "ReLU" - bottom: "input.63" - top: "onnx::Conv_106" -} -layer { - name: "Conv_17" - type: "Convolution" - bottom: "onnx::Conv_106" - top: "input.71" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_18" - type: "ReLU" - bottom: "input.71" - top: "onnx::Conv_109" -} -layer { - name: "Conv_19" - type: "Convolution" - bottom: "onnx::Conv_109" - top: "input.79" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_20" - type: "ReLU" - bottom: "input.79" - top: "onnx::MaxPool_112" -} -layer { - name: "MaxPool_21" - type: "Pooling" - bottom: "onnx::MaxPool_112" - top: "input.83" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_22" - type: "Convolution" - bottom: "input.83" - top: "input.91" - convolution_param { - num_output: 1024 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_23" - type: "ReLU" - bottom: "input.91" - top: "onnx::Conv_116" -} -layer { - name: "Conv_24" - type: "Convolution" - bottom: "onnx::Conv_116" - top: "input.99" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_25" - type: "ReLU" - bottom: "input.99" - top: "onnx::Conv_119" -} -layer { - name: "Conv_26" - type: "Convolution" - bottom: "onnx::Conv_119" - top: "input.107" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_27" - type: "ReLU" - bottom: "input.107" - top: "onnx::MaxPool_122" -} -layer { - name: "MaxPool_28" - type: "Pooling" - bottom: "onnx::MaxPool_122" - top: "input.111" - pooling_param { - pool: MAX - kernel_h: 11 - kernel_w: 11 - stride_h: 11 - stride_w: 11 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Reshape_29" - type: "Flatten" - bottom: "input.111" - top: "input.115" -} -layer { - name: "Gemm_30" - type: "InnerProduct" - bottom: "input.115" - top: "pred" - inner_product_param { - num_output: 1000 - bias_term: true - } -} - diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.caffemodel b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.caffemodel deleted file mode 100644 index f19e008..0000000 Binary files a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.caffemodel and /dev/null differ diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.prototxt b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.prototxt deleted file mode 100644 index 9957c96..0000000 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m1.prototxt +++ /dev/null @@ -1,387 +0,0 @@ -layer { - name: "data" - type: "Input" - top: "data" - input_param { - shape { - dim: 1 - dim: 3 - dim: 224 - dim: 224 - } - } -} -layer { - name: "Conv_0" - type: "Convolution" - bottom: "data" - top: "input.3" - convolution_param { - num_output: 48 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_1" - type: "ReLU" - bottom: "input.3" - top: "onnx::Conv_84" -} -layer { - name: "Conv_2" - type: "Convolution" - bottom: "onnx::Conv_84" - top: "input.11" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_3" - type: "ReLU" - bottom: "input.11" - top: "onnx::Conv_87" -} -layer { - name: "Conv_4" - type: "Convolution" - bottom: "onnx::Conv_87" - top: "input.19" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_5" - type: "ReLU" - bottom: "input.19" - top: "onnx::Conv_90" -} -layer { - name: "Conv_6" - type: "Convolution" - bottom: "onnx::Conv_90" - top: "input.27" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_7" - type: "ReLU" - bottom: "input.27" - top: "onnx::Conv_93" -} -layer { - name: "Conv_8" - type: "Convolution" - bottom: "onnx::Conv_93" - top: "input.35" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_9" - type: "ReLU" - bottom: "input.35" - top: "onnx::Conv_96" -} -layer { - name: "Conv_10" - type: "Convolution" - bottom: "onnx::Conv_96" - top: "input.43" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_11" - type: "ReLU" - bottom: "input.43" - top: "onnx::MaxPool_99" -} -layer { - name: "MaxPool_12" - type: "Pooling" - bottom: "onnx::MaxPool_99" - top: "input.47" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_13" - type: "Convolution" - bottom: "input.47" - top: "input.55" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_14" - type: "ReLU" - bottom: "input.55" - top: "onnx::Conv_103" -} -layer { - name: "Conv_15" - type: "Convolution" - bottom: "onnx::Conv_103" - top: "input.63" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_16" - type: "ReLU" - bottom: "input.63" - top: "onnx::Conv_106" -} -layer { - name: "Conv_17" - type: "Convolution" - bottom: "onnx::Conv_106" - top: "input.71" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_18" - type: "ReLU" - bottom: "input.71" - top: "onnx::Conv_109" -} -layer { - name: "Conv_19" - type: "Convolution" - bottom: "onnx::Conv_109" - top: "input.79" - convolution_param { - num_output: 384 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_20" - type: "ReLU" - bottom: "input.79" - top: "onnx::MaxPool_112" -} -layer { - name: "MaxPool_21" - type: "Pooling" - bottom: "onnx::MaxPool_112" - top: "input.83" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_22" - type: "Convolution" - bottom: "input.83" - top: "input.91" - convolution_param { - num_output: 1536 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_23" - type: "ReLU" - bottom: "input.91" - top: "onnx::Conv_116" -} -layer { - name: "Conv_24" - type: "Convolution" - bottom: "onnx::Conv_116" - top: "input.99" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_25" - type: "ReLU" - bottom: "input.99" - top: "onnx::Conv_119" -} -layer { - name: "Conv_26" - type: "Convolution" - bottom: "onnx::Conv_119" - top: "input.107" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_27" - type: "ReLU" - bottom: "input.107" - top: "onnx::MaxPool_122" -} -layer { - name: "MaxPool_28" - type: "Pooling" - bottom: "onnx::MaxPool_122" - top: "input.111" - pooling_param { - pool: MAX - kernel_h: 11 - kernel_w: 11 - stride_h: 11 - stride_w: 11 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Reshape_29" - type: "Flatten" - bottom: "input.111" - top: "input.115" -} -layer { - name: "Gemm_30" - type: "InnerProduct" - bottom: "input.115" - top: "pred" - inner_product_param { - num_output: 1000 - bias_term: true - } -} - diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.caffemodel b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.caffemodel deleted file mode 100644 index 3134cb5..0000000 Binary files a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.caffemodel and /dev/null differ diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.prototxt b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.prototxt deleted file mode 100644 index 225407b..0000000 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/3m/simv1_3m_m2.prototxt +++ /dev/null @@ -1,387 +0,0 @@ -layer { - name: "data" - type: "Input" - top: "data" - input_param { - shape { - dim: 1 - dim: 3 - dim: 224 - dim: 224 - } - } -} -layer { - name: "Conv_0" - type: "Convolution" - bottom: "data" - top: "input.3" - convolution_param { - num_output: 48 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_1" - type: "ReLU" - bottom: "input.3" - top: "onnx::Conv_84" -} -layer { - name: "Conv_2" - type: "Convolution" - bottom: "onnx::Conv_84" - top: "input.11" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_3" - type: "ReLU" - bottom: "input.11" - top: "onnx::Conv_87" -} -layer { - name: "Conv_4" - type: "Convolution" - bottom: "onnx::Conv_87" - top: "input.19" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_5" - type: "ReLU" - bottom: "input.19" - top: "onnx::Conv_90" -} -layer { - name: "Conv_6" - type: "Convolution" - bottom: "onnx::Conv_90" - top: "input.27" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_7" - type: "ReLU" - bottom: "input.27" - top: "onnx::Conv_93" -} -layer { - name: "Conv_8" - type: "Convolution" - bottom: "onnx::Conv_93" - top: "input.35" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_9" - type: "ReLU" - bottom: "input.35" - top: "onnx::Conv_96" -} -layer { - name: "Conv_10" - type: "Convolution" - bottom: "onnx::Conv_96" - top: "input.43" - convolution_param { - num_output: 96 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_11" - type: "ReLU" - bottom: "input.43" - top: "onnx::MaxPool_99" -} -layer { - name: "MaxPool_12" - type: "Pooling" - bottom: "onnx::MaxPool_99" - top: "input.47" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_13" - type: "Convolution" - bottom: "input.47" - top: "input.55" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_14" - type: "ReLU" - bottom: "input.55" - top: "onnx::Conv_103" -} -layer { - name: "Conv_15" - type: "Convolution" - bottom: "onnx::Conv_103" - top: "input.63" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_16" - type: "ReLU" - bottom: "input.63" - top: "onnx::Conv_106" -} -layer { - name: "Conv_17" - type: "Convolution" - bottom: "onnx::Conv_106" - top: "input.71" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_18" - type: "ReLU" - bottom: "input.71" - top: "onnx::Conv_109" -} -layer { - name: "Conv_19" - type: "Convolution" - bottom: "onnx::Conv_109" - top: "input.79" - convolution_param { - num_output: 384 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_20" - type: "ReLU" - bottom: "input.79" - top: "onnx::MaxPool_112" -} -layer { - name: "MaxPool_21" - type: "Pooling" - bottom: "onnx::MaxPool_112" - top: "input.83" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_22" - type: "Convolution" - bottom: "input.83" - top: "input.91" - convolution_param { - num_output: 1536 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_23" - type: "ReLU" - bottom: "input.91" - top: "onnx::Conv_116" -} -layer { - name: "Conv_24" - type: "Convolution" - bottom: "onnx::Conv_116" - top: "input.99" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_25" - type: "ReLU" - bottom: "input.99" - top: "onnx::Conv_119" -} -layer { - name: "Conv_26" - type: "Convolution" - bottom: "onnx::Conv_119" - top: "input.107" - convolution_param { - num_output: 192 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_27" - type: "ReLU" - bottom: "input.107" - top: "onnx::MaxPool_122" -} -layer { - name: "MaxPool_28" - type: "Pooling" - bottom: "onnx::MaxPool_122" - top: "input.111" - pooling_param { - pool: MAX - kernel_h: 11 - kernel_w: 11 - stride_h: 11 - stride_w: 11 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Reshape_29" - type: "Flatten" - bottom: "input.111" - top: "input.115" -} -layer { - name: "Gemm_30" - type: "InnerProduct" - bottom: "input.115" - top: "pred" - inner_product_param { - num_output: 1000 - bias_term: true - } -} - diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.caffemodel b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.caffemodel deleted file mode 100644 index 507a985..0000000 Binary files a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.caffemodel and /dev/null differ diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.prototxt b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.prototxt deleted file mode 100644 index e5e0581..0000000 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/5m/simv1_5m_m2.prototxt +++ /dev/null @@ -1,387 +0,0 @@ -layer { - name: "data" - type: "Input" - top: "data" - input_param { - shape { - dim: 1 - dim: 3 - dim: 224 - dim: 224 - } - } -} -layer { - name: "Conv_0" - type: "Convolution" - bottom: "data" - top: "input.3" - convolution_param { - num_output: 64 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_1" - type: "ReLU" - bottom: "input.3" - top: "onnx::Conv_84" -} -layer { - name: "Conv_2" - type: "Convolution" - bottom: "onnx::Conv_84" - top: "input.11" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_3" - type: "ReLU" - bottom: "input.11" - top: "onnx::Conv_87" -} -layer { - name: "Conv_4" - type: "Convolution" - bottom: "onnx::Conv_87" - top: "input.19" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_5" - type: "ReLU" - bottom: "input.19" - top: "onnx::Conv_90" -} -layer { - name: "Conv_6" - type: "Convolution" - bottom: "onnx::Conv_90" - top: "input.27" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 2 - stride_w: 2 - dilation: 1 - } -} -layer { - name: "Relu_7" - type: "ReLU" - bottom: "input.27" - top: "onnx::Conv_93" -} -layer { - name: "Conv_8" - type: "Convolution" - bottom: "onnx::Conv_93" - top: "input.35" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_9" - type: "ReLU" - bottom: "input.35" - top: "onnx::Conv_96" -} -layer { - name: "Conv_10" - type: "Convolution" - bottom: "onnx::Conv_96" - top: "input.43" - convolution_param { - num_output: 128 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_11" - type: "ReLU" - bottom: "input.43" - top: "onnx::MaxPool_99" -} -layer { - name: "MaxPool_12" - type: "Pooling" - bottom: "onnx::MaxPool_99" - top: "input.47" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_13" - type: "Convolution" - bottom: "input.47" - top: "input.55" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_14" - type: "ReLU" - bottom: "input.55" - top: "onnx::Conv_103" -} -layer { - name: "Conv_15" - type: "Convolution" - bottom: "onnx::Conv_103" - top: "input.63" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_16" - type: "ReLU" - bottom: "input.63" - top: "onnx::Conv_106" -} -layer { - name: "Conv_17" - type: "Convolution" - bottom: "onnx::Conv_106" - top: "input.71" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_18" - type: "ReLU" - bottom: "input.71" - top: "onnx::Conv_109" -} -layer { - name: "Conv_19" - type: "Convolution" - bottom: "onnx::Conv_109" - top: "input.79" - convolution_param { - num_output: 512 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_20" - type: "ReLU" - bottom: "input.79" - top: "onnx::MaxPool_112" -} -layer { - name: "MaxPool_21" - type: "Pooling" - bottom: "onnx::MaxPool_112" - top: "input.83" - pooling_param { - pool: MAX - kernel_h: 2 - kernel_w: 2 - stride_h: 2 - stride_w: 2 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Conv_22" - type: "Convolution" - bottom: "input.83" - top: "input.91" - convolution_param { - num_output: 2048 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_23" - type: "ReLU" - bottom: "input.91" - top: "onnx::Conv_116" -} -layer { - name: "Conv_24" - type: "Convolution" - bottom: "onnx::Conv_116" - top: "input.99" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 1 - kernel_w: 1 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_25" - type: "ReLU" - bottom: "input.99" - top: "onnx::Conv_119" -} -layer { - name: "Conv_26" - type: "Convolution" - bottom: "onnx::Conv_119" - top: "input.107" - convolution_param { - num_output: 256 - bias_term: true - group: 1 - pad_h: 1 - pad_w: 1 - kernel_h: 3 - kernel_w: 3 - stride_h: 1 - stride_w: 1 - dilation: 1 - } -} -layer { - name: "Relu_27" - type: "ReLU" - bottom: "input.107" - top: "onnx::MaxPool_122" -} -layer { - name: "MaxPool_28" - type: "Pooling" - bottom: "onnx::MaxPool_122" - top: "input.111" - pooling_param { - pool: MAX - kernel_h: 11 - kernel_w: 11 - stride_h: 11 - stride_w: 11 - pad_h: 0 - pad_w: 0 - } -} -layer { - name: "Reshape_29" - type: "Flatten" - bottom: "input.111" - top: "input.115" -} -layer { - name: "Gemm_30" - type: "InnerProduct" - bottom: "input.115" - top: "pred" - inner_product_param { - num_output: 1000 - bias_term: true - } -} - diff --git a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/readme.md b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/readme.md index 1ea7825..b958cd0 100644 --- a/SimpNet_V1/Benchmarks Results with Models/IMAGENET/readme.md +++ b/SimpNet_V1/Benchmarks Results with Models/IMAGENET/readme.md @@ -1,4 +1,8 @@ +### Where are the pretrained weights? +All pretrained weights are now accessible from [Release section](https://github.com/Coderx7/SimpleNet/releases) of the reposityory. + +### Note Please note that models are converted from onnx to caffe. The mean, std and crop ratio used are as follows: ```python