-
Notifications
You must be signed in to change notification settings - Fork 1
/
02-algoritmy-uceni.nb
12252 lines (12176 loc) · 711 KB
/
02-algoritmy-uceni.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 728095, 12243]
NotebookOptionsPosition[ 724857, 12136]
NotebookOutlinePosition[ 725321, 12153]
CellTagsIndexPosition[ 725278, 12150]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[{
"Kapitola 2 - Algoritmy u\[CHacek]en\[IAcute]\n",
StyleBox["Demonstrace u\[CHacek]en\[IAcute] neuronu pomoc\[IAcute] \
r\[URing]zn\[YAcute]ch tr\[EAcute]novac\[IAcute]ch algoritm\[URing].",
"Subtitle"]
}], "Title",
CellChangeTimes->{{3.506788333052947*^9, 3.5067883454315195`*^9}, {
3.5073590076481843`*^9, 3.507359032449834*^9}, 3.5073599568952236`*^9, {
3.5073600002592297`*^9, 3.507360001479885*^9}, {3.507360051770771*^9,
3.5073600524743605`*^9}, {3.507360282704596*^9, 3.507360287426696*^9}, {
3.5073607144794245`*^9, 3.5073607224504366`*^9}, {3.5134065777126937`*^9,
3.513406584598568*^9}}],
Cell[CellGroupData[{
Cell["\<\
Na\[CHacek]ten\[IAcute] knihovny NeuralNetworks\
\>", "Section",
CellChangeTimes->{{3.5073602800352573`*^9, 3.5073603289964743`*^9}}],
Cell["\<\
Nejd\[RHacek]\[IAcute]ve na\[CHacek]teme knihovnu neuronov\[YAcute]ch s\
\[IAcute]t\[IAcute].\
\>", "Text",
CellChangeTimes->{{3.507360408586581*^9, 3.507360469435308*^9}, {
3.5073605129338317`*^9, 3.5073605139169564`*^9}, {3.507360599217788*^9,
3.50736063908185*^9}, {3.5073606876975236`*^9, 3.5073607032795024`*^9}, {
3.5073607601777277`*^9, 3.5073607715351696`*^9}, {3.5084334105739098`*^9,
3.5084334111769867`*^9}}],
Cell[BoxData[
StyleBox[
RowBox[{"<<", " ", "NeuralNetworks`"}], "Input"]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.507360750489497*^9, 3.5073607641152277`*^9}}],
Cell["\<\
Pokud pracujete v Mathematice 8.0, vypn\[EHacek]te je\[SHacek]t\[EHacek] \
zobrazov\[AAcute]n\[IAcute] chybov\[EAcute] hl\[AAcute]\[SHacek]ky \
Remove::rmnsm. Tuto hl\[AAcute]\[SHacek]ku vyhazuj\[IAcute] funkce knihovny \
NeuralNetworks. Na funkci knihovny toto nem\[AAcute] \[ZHacek]\[AAcute]dn\
\[YAcute] vliv.\
\>", "Text",
CellChangeTimes->{{3.5073722663308234`*^9, 3.5073724902892623`*^9}}],
Cell[BoxData[
RowBox[{"Off", "[",
StyleBox[
RowBox[{"Remove", "::", "rmnsm"}], "MessageName"], "]"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.507372496128004*^9, 3.5073725146658583`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["P\[RHacek]\[IAcute]prava tr\[EAcute]novac\[IAcute]ch dat", "Section",
CellChangeTimes->{{3.507360869997173*^9, 3.507360875055815*^9}}],
Cell["\<\
Demonstraci provedeme na jednoduch\[EAcute] neuronov\[EAcute] s\[IAcute]t\
\[IAcute] s jedn\[IAcute]m vstupem a jedn\[IAcute]m v\[YAcute]stupem, \
\[ZHacek]\[AAcute]dn\[YAcute]mi skryt\[YAcute]mi vrstvami neuron\[URing] a \
sigmoidn\[IAcute] aktiva\[CHacek]n\[IAcute] funkc\[IAcute]. Jedin\[YAcute] \
neuron v s\[IAcute]ti m\[AAcute] 2 vstupy, na jednom je st\[AAcute]le hodnota \
1, na druh\[YAcute] jsou p\[RHacek]iv\[AAcute]d\[EHacek]na vstupn\[IAcute] \
data.\
\>", "Text",
CellChangeTimes->{{3.507361554116045*^9, 3.5073615565473537`*^9}, {
3.507361608784487*^9, 3.5073616336791477`*^9}, {3.5073617292527847`*^9,
3.5073617935334473`*^9}, {3.5073634506293716`*^9, 3.507363512946285*^9}}],
Cell["Vytvo\[RHacek]\[IAcute]me tedy tuto s\[IAcute]\[THacek]:", "Text",
CellChangeTimes->{{3.5073620917938213`*^9, 3.5073621035783176`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"fdfrwrd", "=",
RowBox[{"InitializeFeedForwardNet", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{", "1", "}"}], "}"}], ",",
RowBox[{"{",
RowBox[{"{", "1", "}"}], "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"RandomInitialization", "\[Rule]", "True"}], ",",
RowBox[{"OutputNonlinearity", "\[Rule]", "Sigmoid"}]}], "]"}]}],
";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.5073621285954943`*^9, 3.5073621403734903`*^9}}],
Cell["\<\
Nastav\[IAcute]me v\[AAcute]hy vstup\[URing]m neuronu na zn\[AAcute]mou \
hodnotu 2 a -1:\
\>", "Text",
CellChangeTimes->{{3.5073626867833753`*^9, 3.507362751142548*^9}, {
3.5073819576319623`*^9, 3.507381957936001*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"fdfrwrd", "[",
RowBox[{"[", "1", "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"{", "2.", "}"}], ",",
RowBox[{"{",
RowBox[{"-", "1."}], "}"}]}], "}"}], "}"}], "}"}]}], ";"}]], "Input",
InitializationCell->True],
Cell["\<\
Pomoc\[IAcute] takto vytvo\[RHacek]en\[EAcute] s\[IAcute]t\[EHacek] \
vygenerujeme tr\[EAcute]novac\[IAcute] data. Na vstup s\[IAcute]t\[EHacek] p\
\[RHacek]ivedeme vstupn\[IAcute] data a v\[YAcute]stup s\[IAcute]t\[EHacek] \
budeme pova\[ZHacek]ovat za spr\[AAcute]vn\[YAcute] v\[YAcute]stup.\
\>", "Text",
CellChangeTimes->{{3.5073628247914*^9, 3.5073628577150807`*^9}, {
3.507362901057585*^9, 3.507362953048187*^9}, {3.5073629975733404`*^9,
3.5073630355481625`*^9}, 3.5073631122248993`*^9, {3.5073631630503535`*^9,
3.5073631983693385`*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"Ndata", "=", "50"}], ";"}], "\n",
RowBox[{
RowBox[{"x", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"N", "[", "i", "]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "5", ",",
RowBox[{"10", "/",
RowBox[{"(",
RowBox[{"Ndata", "-", "1"}], ")"}]}]}], "}"}]}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{"y", "=",
RowBox[{"fdfrwrd", "[", "x", "]"}]}], ";"}]}], "Input",
InitializationCell->True],
Cell["\<\
Z vygenerovan\[YAcute]ch dat si m\[URing]\[ZHacek]eme zobrazit energetickou \
funkci s\[IAcute]t\[EHacek]:\
\>", "Text",
CellChangeTimes->{{3.5073633349011755`*^9, 3.5073633606729484`*^9}, {
3.5073634011560893`*^9, 3.5073634264768047`*^9}, {3.5073635256163936`*^9,
3.5073635921373405`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"criterion", "[",
RowBox[{
RowBox[{"a_", "?", "NumericQ"}], ",",
RowBox[{"b_", "?", "NumericQ"}]}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"fdfrwrd", "[",
RowBox[{"[", "1", "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"{", "a", "}"}], ",",
RowBox[{"{", "b", "}"}]}], "}"}], "}"}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Transpose", "[", "#", "]"}], ".", "#"}], ")"}], "&"}],
"[",
RowBox[{"y", "-",
RowBox[{"fdfrwrd", "[", "x", "]"}]}], "]"}], "/",
RowBox[{"Length", "[", "x", "]"}]}], "]"}]}], ")"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"surf", "=",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"criterion", "[",
RowBox[{"a", ",", "b"}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "1"}], ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "5"}], ",", "3"}], "}"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "20"}]}], "]"}]}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.507363618877736*^9, 3.507363619875863*^9}, {
3.507370814635482*^9, 3.507370907886323*^9}, {3.50737097007722*^9,
3.5073709769975986`*^9}, {3.5073714084133816`*^9, 3.5073714152007437`*^9}, {
3.5073716865722036`*^9, 3.5073716891755342`*^9}, {3.507371777691774*^9,
3.5073718621740017`*^9}, {3.5073720755195932`*^9, 3.5073720817478848`*^9}, {
3.507372713302582*^9, 3.507372714118185*^9}}],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxcnXk8VV37h00hUaYIkaGk0oAMpWxSnpRMjRqkUikNmmlUSqUi0SANNEjK
PI9nmzk4ZC7KPAtJyvyTzn2v3+d9/nk/z/Xsd5/je+2z91rrXmsvhb3HLfdz
cXBwfOTj4OAe/987v3tlx8a6GT+sUxrGxsTo4itu32OpTkru6dGKRNd65EKt
p8yHdDqprF4/w3rNDOR7fBpnW8zupM4aLLd/WFFEAS/6PEVSrLSDUrmsOCzU
1IRc1mzZ3raL7RTz+0Z/ldAfyBenth13C2imnJ89Ws20/4O8ufY17aNVT2mt
/9xirzKG3PrwleaVVV+p/uF7ma69XPrAv0W7JQz1V1IWmxY/rjDnRb5ytdXw
z4Vl1McPRXYqoZOR766gJKIXF1N83CeXOwkJIQ/9kD6w7HEhpRY8mbdJUxj5
iybuXfrpeVTNti/HhJpEkJ8vD/Q7EJND3eP5UKHpLYY8VcK/Xsosi9INu6Bv
bTgd+eU/lY1tJzOoth0m7117JZDHrgueXDQlnXrMJysa6j8Dee/N7sf3edOo
NZHfz1eYSyNv/VHqIWmZys5FBvkG93U+/DU0BX4NJ/5/onRmhMu2QF3iF3jL
DyXRw2rEL3DDx9sLJ4kSv8Dj1z0sme1D/AK3/vjisGZ4G/oF7jjL2WapahP6
Ba7pFrZoLK0W/QL3iz3OWL+0Cv0C3xHMd57vZjn6BT7dcrtod3cx+gX+h2dO
+EqFIvQLvFKS29u6Ig/9At934ek6IZsc9As8K7ZY2DQsE/0Cv81t/fNpQDr6
Ba785Mj153PT0C/wh0ujjt6TSUW/wCX1rrzkOUqjX+C9sRvP+/HT6Bf41Kd0
xboEBvp9OHE+YfpM0P04F03iF/jOFPPovjnEL/DnR25d2trfgX6BO15Rn21s
QPwCf1Moo7vnRSv6Bb5grZxP8K0G9AucX0XDWeTMN/QL/NuPnJpo+0r0C9x2
7lig5nAJ+gX+KcRly/PnRegX+Nn43A5ZgXz0C9xMYZNb9+Qc9Ivnv5HnvGU0
A/0C/9J/3PFXYhr6Bb6cx6b9unwq+gU+98vXDYZTafQLvObn59PfSlLQL/BN
KY+YMpop6Bd4qf6lxxbiKegX+MkiC71DG1LQb2HsE0uhJiG6t99xn4Eq8Qvc
Wn+t4Htx4he4v2XLRt984he4to+iZCSjHf0C19KN1py+vAX9Io/p2R9A16Ff
4BdX+d3WWVaFfoHHJn/sG3IuQ7/Az87kLxvd8gn9An+4vqK9xSEf/QIP3PR2
52BiNvoFfuG+RmekTgb6Be5zvf/UmeBU9AucP8C6PP8rA/0CX+Tf93woJBn9
Ap+TZux8/2YS+gU+S9U8VWxOEvoFLvFJw/38hiT0C3ya59cku+Ik9Au87ueO
hcc8k9HvaZvfzkmuArSbnq2kjRzxC1zSR/Zg8GAH+gV+xooVweNO/ALvfrH7
yU1u4he4Sr8T/yznJvQLfH767u0GoTXoF/jJ/3b/XldcgX6BZ3jPM0g7XYx+
gc/9MUcgUa0A/QJ/PGqjssk1G/0CX7K5y111bzr6BS5gst3z3hka/QK/VrPb
J1c0Gf0C/2Wva5lbnYB+gbtwbF94pj0e/QL/vXJ1lEFNPPoFbnlYxG2efQL6
Bf5+ldm1MxaJ6Be4modl4E474hd4VADnnU/exK/U5C2h9ip8dIytpEjSZOIX
eFKT0Nn2EuIX+BOVpd0tS4hf4GuY+6xM/7SiX+DdSnabeU43oF/gkWEpFtv8
q9Av8H2h2bazVpWiX+DnTt3YcPcBC/0CH+D18dh7Oxv9Al8Uvfbevhtp6Be4
ysARlbkKKegXuGzzM9/y3Hj0C/yoSY114f1Y9Av8qlG1QebPGPQLfJ5Q4WO5
Q7HoF/jkaNOBxotx6Be44o330lLj3sEv8JsOZw+u3U38Ai+c/6twYz3xC9yw
a3kBz3Zyf04Jj/oqzeSmNXe6PNzf0YF+gb+/qa0T8pT4BT7Sta+QJ7Ad/QKv
f2MtsfVWC/oF/upScvxl+Tr0C7z8tUr9zfHGLPgFPrBAViPmXhH6Ba760WXB
l0k56Bd41cG4roaUVPQLXINSZ2zjSUS/ePzM97/nd0SjX+AHvhs574uMRL/A
/R50Brx+HYl+gc/6ybNS5ksU+gVedCzjY/HbGPQLnJ+eklrpR/wCX8Z1JWmP
D/n9ApfLmcS87UTuz8C9uvf0Sy4jz1/g+sXzpq8rJ+2rfdvFBJn2HHT2OwUj
NwbxCzxcdezN/v+IX+Bmdtu269W3oV/goX9e7JJ71YR+gbebXhGXV/2KfoEH
SHL0K/8uRr/AP4rG2kVeykW/wL2+X1vTaZGKfoHb1o/NWpMTi36Blx1tfDlv
fzj6Ba5U9Xk6Y2cI+gW+c8/JOSclw9AvcPFOwYqpJyPQL/AVM+Z/2bUgGv0C
l3shlFNcSn6/wM8NOlz/uC4B/eL3dMn/JHWDPH8xHyMlG01X0r4C/n2jwbU3
80j7Gbjq7bN2sgOkfyTM23i6V3qQ4bLOxtvzKvELPNeJJRtY1I5+gU+b+eat
W14r+gUuvsQ9NV2/Af0C19jDSrheVoF+gYt9KJnzZCwf/QI3vnfmujorFf0C
/3HN2fmQVDT6BV7UZHGc5RuIfoEfCZ/N8WvwNfoFPjNgq4LK3ffoF/iVrQ82
rU0hfoG7CpVk7r8ahX6B3w3OPbW8JBb9Aj89W2rb/pgE9Aucvu11yXZZMvoF
HjBitcjYnoF+gZ//ufCOz0fSPwKevmZDxJgr6f8CZ7lsElxjnIZ+t2/1/2Ru
/ZMRZ3v+uKcq8Qu8delm59YFxC9wrilbLTeYt6BfPF6HOfnMmVr0C1yv+tOu
WU7F6Be48A0btTrjDPQLXEhnr4JrYBT6BX50m8XYaPQL9AvcQamTY1PUA/SL
f9efAA9x0QD0C7ysPOGo7usw9Av84K765HVa0egXeFL/scGBwTj0C9xuXd2+
h/JJ6Bd4eHdQ5BxmCvoFnqWQEJJ2i/SP8HsebffgvkH6v8AVAzafXLCHjG8A
Xzv9h1WDYjr6BV7+ffcaX1Y6+l1rkbzT2rCN8fnam8kKSe3oF7ijkmmTgFkb
+gUe5qL8Usu2Cf0CZ0oc2u5Y9QX9Av/y7scczVom+gXeOpjy8bF8PPoFXjJy
9+kLFX/0C3zhSv0TsckP0S/wY7GrvDKuvke/+Ln8NV3nSyPQL/AP30P3uryJ
Rb/A92wXSjC/noh+gb/xaalfE56CfoGHp9k90/lAo1/g/AZF63VySf8X+Fkr
z/N0MhnfAL7zsOB5YU8yfgV8fmxyve349Q9+gU/fttjarSMD/QI3/b50lcGF
TPQb23JcVcu7gnFEZHHbsoXEL/D3asypweqt6Bf4kv+4Xq8RbEC/wDtlDlxU
aSlFv8BLPl+YpBGQhn7xc1X+O7fIMQz9Av+cveeu5cz36Be4/gLDs1F+4egX
eODATf5VsuT5C5xpSxk/eE/aV8C5dapXBG1loF/gKifzDzQuSEW/wGW7XuXM
O5SGfoFvPzYpMPtkOvoFrrTUPbh1Ywb6BW60vieuUjwT/QJPLxG8UZ6YiX6B
h7gnNQZsyEK/wKf6+EsPFWShX+Adatb746hs8vz1Kedx6Q2ierYNvr52uY08
f9n8gJM/va60mTx/2dzVzmzvLrta8vxlcydWjMNlv0Ly/GVz1l35kbjkJPL8
ZXMZj1jjmr4o8vxl8+HTrkmhPHHk+cvmbfelglIDksjzl82bi59cStpJk+cv
mw/dUPyhwEf6R8Cf7/4ZWbSH9H+Bi/F+Xqd6mYxvAN/2vvqO7uFM8vxl8/9+
xHQ+XJJFnr9sfmZ1dOnsz2T8GfiWPw5hnw9lk+cvmxcNXuzWbskmz18232C5
hytuUw55/rL5PO/trkLROeT5y+YqHi5qVgK56Hfo3tvv5ebfKEtvHhWf0Fb0
CzxB/L3KRu0m9At8zpf1/SX2VegXeIqE1XG5yhz0C1xCOH6J24sU9Auc1Wr3
fKA6Bf0Cn7J8cNsvY9K+Au6zXynmpWg6+gXusfgjrXg3A/0C1/OTqrRNzkS/
wO2C+7V3RGehX+Bm2UdlJl/NRr/A5c20OQ/NJ+PPwE+vuCv+PY7UF4BvHMrz
UVLPRb/Abxrk7dJ9mot+gStNcTKx7ctFv8BXm0wVEDdkol/gbhVSd7VuMdEv
8HNvxDLNM5no9/Dsbckh/p2UiF3U7xpGC/oFHlNgbbp+fwP6BV50adePT3fK
0S/wgbjt7Z4Hs9Av8ESVwe97v5P7M3CDOFmJZQqkfQWceU55du37TPQLPN1d
10ehPwv9Aj9YV34mgyMH/QKX+ND65Up5DvoFPuuq8qVAl1z0C/xXnUEnU4SJ
foG3Bx24/PsmE/3i5/4n9WVPBxP9At/+Kqi+mcpDv8AVB7lMjt3KQ7/AP/Vn
Ki3OzkO/wKvfakTWjOShX+D5jkPzKhbmo1/g7/o8783Zlo9+O+guTiehX9Rp
nvDzP4Ob0S/wt2uPX1xwrA79At/ZamjyjlmMfoGn/5cs+sUwG/0CX3A5ZItU
XBb6BZ7Qsteuoycb/QJf08Kw559O+r/A239WPygdzUW/wNdlj+QYxjLRL57/
0JTjc9bloV/gcr8UfFl0HvoF/ujXfhNhxXz0Czz8XGJtxcl89AtcQG0sOikm
H/0C/91vsf1ATz76Ba5UFd9WrFCAfoG31jYtuWlSgH6Bu7rlV4aeKEC/wLkl
8+7oPChAv8DbmtS3VocUoF//42pvpZlD1DVXpqmVYxP6BX7hzJ4BmZJv6Be4
tmSOm6VTEfoF/otrwazKA7noFzjtMmVVbmUu+gUeNxbYrljCRL/Ak897G6u8
ykO/wJdWJw7zGOajX+Ay18XL79P56Bf4rc1fHonNLkC/wEs3sIZXny5Av8DH
RmcoNUUXoF/g943ytm7pLEC/wC/WzLs4RZqFfoHnqB9ZWazPQr/ARR7kevDs
ZaFf4O/7qvveX2ahX+A3As8ucX/MQr/A05xD+C2CWegXeHqcwp4TNAv9qk5b
PtvakFNfKlyltleuEf0CHzvWJ3ex6wv6BR7/8s/nzmYW+gVeG52n+cQjD/0C
L6m/zaGkno9+gTPPLPx8oo2MbwBvLemdrOxYgH7x+MdupxSbCtAvcAVu7c2+
y1joF7i8mSz3loss9AvcuOdVLmcEC/0Cn3z0UNq3ryz0C/xk4wt1Ha5C9At8
xtqk0Sj5QvQL/LqWe/ad5YXoF/gq/aHRN+aF6Be4dscHr/B9hegX+OaVu8yW
ny5Ev8BfX3xzOuhaIfoFzm1krLXVoxD93jxQ9SvEn0ffw/Px/Atv6tEv8Chd
Uf1NjhXoF3j17kOtxdeJX+DP/thPWmlegH6B84VbzhqqKUC/wNsD1+sdt2Gh
X+Ajd+UN5FNZ6Be4boLHIjWBQvQLvDHj5xrPVYXoF7jMIbPVY8cK0S/wGXVJ
h0IeFKJf4Nbccz2KQsn8DeBP9IfqurOJX+DdYy6mc6uJX+BTNxxdbfSd+AUe
ncRV1jJE/AIXfWcxrM9ThH6BH1xAd8VOLkK/wFOM3ztfnFqEfoGrxYdKfBAt
Qr8NyRezx8b49A3LPv4pmFaHfoHfOW77qjmiFP0C93k/y6q7gfgFrr2g8r3s
Mxb6Bb5POrd44bgX8AtcTtn89dieQvQL/EAN/828V4XoF/jmNY3px0qIX+C+
vL8kPv8hfoGfTpeomj2F1PeBW99kWvVJkPkbwDPUfPofyRehX+DXBJZNvq9S
hH6B15epv165uAj9AjeSrw1oXFqEfoFfllG7HbesCP0Cj2U+sK9dSfzieU5+
dTtvQPwC54wN9H2xmvgFPmbJdXL3f0VU6dqw87sM2xjSE3UlMVrGLrMjeXkn
egeusIGvs2llJyUz8e8y+sCLQmvC/M6S8W3g4fUnd/tupikT+XdzPMf7Y1lR
yjO8K/hpmUbDyOl0O9XwghFeOd6OB75M7WnggeMtePyRXTeMDJ0m0cYbXoR5
cZHjgbfskvfY/qyJKirfbLd0vD9vP8FHGG4Bnc4jZ9rxPMC9OuT83C614PHR
Iate+yf1M1KvSB5zf92GxwOfP+dp3qu75PyjY3//6WYcL/rwbPaNVjwe+AnN
1p/mcg14/INX5+OTxn8f894rVu2cRv4u4GHtG3Y+Xl+LfxdwJ9F5Gq8vFFHf
VPe/DB1vBwOXTW034+VNQV8PxcvymsZ/Z45aTQID/a34ucDbfy28UUs14fmB
D/xH3b7Wm43nB5547L7v+8FoPL/7Evl3XuO/15wLO3fLdJLcgPN1HMrZpNiA
fxfwNsN9TkEzyvBzgWuZ+W72pdPwc4FPez1/o9/dePzcqDPTpf/eDxw4hUzd
I5vxc4HXjshOay6uxc8FfvJJ47uDWUX4ucCVwqo5WZvT8Dz3D21YMjFu2mWS
uXWwGs8DvHC7kOrsy/l4HuDPorbo8ldl4HmMZtwvyR2/D8l6jBrNDK7E8wBf
eO+0+NEGJp4HeN+SbV2PhrLxPMNZxWf/3re+zL3ge3NOGZ4HeBhze0OhbR4e
/yVB4N7f+5kXfcHY6m0xHg/c6vLOvt0B+ZinpuhH67/3ufeC+3MrJn3F8wDX
NbXYGLjgEx4P94f7J7yXd66rwvsAHP8pvpE/v7oOPxf42nWb7+SPt0vh/gA8
jHGAP2dhEXI4/9ULDDsBI3L/gXmDzhE8ySr/7z4DvESUs2adSCo+R+C+EXB+
1WbV26S+CfeHGYt316uZkvFYuA8wpM8Ym+4l4/Dwe/+y+DB1W4YcD79rpWnG
LQ/tyLgf/B4P1EaEnljdiM8v4OcUTy71P5JF5r+xf18nYtS0gu6QejrwkMkx
g1PjGHg8/C5Go0rzFgo1498F/AnPz6cnY0m7F7ipYe3VFx5JeB64/t3O9xjI
bGrE8wAPpi8svDMjG/8uuM6tc7mLS66U4vHA/QJWbBF1z8Lj4XouGnkse+7U
JzweeGlVI9VjlIPHw/XstzXX+ntAIXK8brd6rxu9z8LvD9fPwlNz9+wdLsPj
gUvFV1SbvyP9DuCiRyTOHBl/zi7xszAJ8e9k8C51yx1/3tI8L7fTT8avq3//
LqMP3PP569PXPtB4vKCduJe9yvhzfLa2pFNIDR4P/NzWoaxluqRdBOfhmO3K
V6XXieeB63zl73kGRuP9VjgPXM/LBt4ane4nz004/3B45fQ+XfL94fhX6gsT
Ho6fH46Hz70SqHLR4gmpI8N5eJ4/l/p2tg4/F76PR4NqYOz4726p2qHTo2M1
eP4Nk43tZDQ7kcM8z9YlL9bcXNBJcXDUMnXUHurB8XcsImuW8RIOx3s87XEI
b+yg1s5Ze2/8v+F86Tz7zf5TxAiH4wM83VRCXNupmatcdDg4evD4D28uqSo+
a0EOx0ek8b0+vaGZ8j6xdz4HB5mn3aH3JO/JpXrkcLybS8HVB5PrKNci+akc
HByYf2EJh3+03lfkcPy2mDSt1y++UKvshPk4OHjw+J2rZMzm5VQgh+PLnf0/
Fx4sY7cD+PB41j2T26UhJcjh+JsfGHse3fpEJTzu/jM2NgWPt9QqvN7oVoQc
jnc2dPKu0Cmgzi6u+TE2Ng2P3/PN9z5jZT5ynK/rnn3qNyuH8tl38NfYGJkf
7rw9p/SHB+FwvMuRoW8RHpnUuYnzkHnj6tMWNwhVEo75B/o/rjJKpzYPbeka
GyPzyZ2qf3mzygiH4590Xji/JSKV0shmtY+NSeLxo2GP9t6yS0OO+UiXdJ4L
oSkRL6OWsTEpPH5Kl5VB16lU5HC8dN16g1MyNF63OO93cdVyPllyfQIP1eCf
eTKCXIfAPZOmhwdktuH1Blwg6PlVaVYjXlfA3VM2ypSPfsPrB7hHXHdl5ldy
nQCP8dSZFtBVjNcD8Ht37Ew+vmKhd+DVtTn8o8a56Bd4/ZNh/9zdmegRePhv
9+N6r9LQF36uE+XSV0WjF+CzeuIEku8yMH/gh3qPM984pGDOOH+bX/TqOekU
zBnmkeaJxTgp85GcgUvdk12ZcZDkDHyr+Oa1bhmtmDPOy62ok+Ka1YA5A5+5
OaMgPrkKcwbuMS/OPGmoFHMGvkd77vFTu4owZ5w3a56idEKCiTkDZ8pu7Y63
yMSccT6t8uiqr6OpmDPwpEmVaTUJDMwZ+NG22+Xy+5MxZ+Au95M6nXYmYc7A
l52y5tykl4Q543zdZFnxi/FJmDPM55yXbJq5obkDc8b5pSWNOdMH2zFn4GPH
j2U/cyL3T+AJB7hW0wZ1mDPwRWYeu6TNKzFn4HqpAe/XDHzCnIHv2P+kYf6R
PMwZeOP7dzv0T2dizsCb3Z/oX9mdijkDf3jWjVlyLxlzxs/d/H3am4IEzBl4
rYe4WWBLPOYM3JqTpXBuZgLmDPymiM4kqaEEzBl4WY+ahchSkjPOaxXNHLaK
JjkDXzaJd2vIDpIz8OgVyrGNX5swZ+CXJbjteE59w5yBO816/FM0rhRzBt7a
lD39YHgB5gz88Peab4p/MjFn4PVPGPeHmDTmDFyk83n2rDmJmDPw12NnjXoq
YjFn4B0ndSukh2IwZ+DyvxctEQ6JxZyBizo0Z1dJxmPOwKkn74O0CknOwL8d
3PUx1YfkDPMbJ1d5nF50lOSM8zx/cgYpXWzDnIGzRg33fv/egDkDj1h2yahJ
8gvmDNyxQci0ZLAIcwb+2rB939CKbMwZ+H/+o57t9jTmjPM8Q45WpZ6Lw5yB
6z57WPbJNgpzxvmuXyVf+b6NxJyBf27niCrvj8Kcgc80LFfznk1yBj6kOjXU
+xLJGXjTyp8Z5zMTMWfg8wOFTRc2JWPOMM+wpmXM6BgPyRn4qW8Pdqiva8Wc
gY9tjzfd8qEOcwbu2PRy5f7rZZgzzpN80yGcvJqJOQPndy+eqvGGxpyB/9nw
+6ZJbjTmDDwq2O5hhnEY5gzcartFkM7zUMwZeNLTz/qJyhGYM3Afc/55vzZH
Y87A1c8oaxufjMOcgd/jNd6yYnUi5gzcOzlNIC8zGXMG/jwzbHPZMANzhvl+
WreMHkccb8ecgXs2yAg7xzZjzsBTnB16M/W/Yc44X/FP/YrlZUWYM3Dl43e+
rb2ahjnjPMz7+7UHxiIxZ+AnMr0uus17hznjfMUFKffd0wMwZ/z+z6JGj3OS
nIFn9AdJck2OwpyBD7yZqniUMw5zBp6ZfE5hztZEzBn4yZ3tbjqLUzBn4AmP
g0NHzEh7D/imA7/dBK1TMWecr3gv+mDiqzbMGbjOCkXtFSmNmDPwkJEtQq3M
SswZeKfFD68/p3IwZ+BL5jg2LWuJxpyBF4Zff5mr+RxzBl4Qefip0bunmDPw
xRvdo9d8/IA5A7fiLu/bnBOJOQP33PdV1PZaHOYMPLHxq92i9UmYM/CA1bIv
RnYwMGfgY6sokVm/acwZ+IDD0UvPpqZhzsCP97h8uz+ahjnD/DeXaOUZ3F6t
mDNw7yz7qJyD9Zgz8EU/lj0VMyvBnIFP5V8932g2jTkD3yp0MWDu8teYM3Cb
htZ3Jw74YM7AXxneHuQ2Dcacga+6kK1yZUU05gzcToV2tzFNwJyBJ1rkr3y3
PgVzBv5o+e7HM5JpzBm40k3nrdt50zBnnA+5ZOt5Del0zBnnHy6/oLuGJwNz
xvmZkwW2KhVkYM4wDy0i2jvISbcFcwZ+RunQct6AGswZeD9X9yw6Ox9zBr5i
vcbOFcHRmDPww/evq3v5vMecgQtm3lExMo/AnIErrk+dKXM7DnMGfoAlZPjC
ORlzxs/9vcivJpLGnIG/kLObedUgDXMGHjO4K+6zczrmjPPx4g+Ezb6egTkD
H85akdayKxNzBv4w8Av9RyILcwYu887VvCM6i9yf2fPBVkj06k31ayL3Zza3
vj3J4a7DF3J/hnmACle3eXVkkvszm99iecZMb4kh92c2f+FqFR1REkvuz2x+
w2uF94x5yeT+zObVXyLVhutIewN4fq+bpVNUGrk/s/nUVeEfzOZkkPszm3cv
TXodb0L6g8DPl2tVyelmkfszmx9VezPFciSL3J/Z3H4Zb2eEXza5P7P5pfD1
Q+8W5JD7M5sXVvheGnmVgznDvKz1l+QdphU2YM7AfWcWLWrPK8OcgZ/ntV80
+0I65gzcr3dF2q6CFMwZePjXzUUrVVMxZ+CVl09LFhmkY87As/aOHrzZkYE5
Ay9R5ue3WZaFOQPX9tiWsdcgG3MGrix3mWfldDJ+AnyvTu1FZzoHcwZem5/n
Ns8kF3MGnmisbRScmos5A6/Y2K/4YA4TcwZ+JDhWTP8CE3OG+VE9zA3f7Grq
MGfgFifyHrDWFWPOwMsP2l6sOJmBOQPfXSp+17A0HXPGeVwdayI3e2ZizsAl
B1h9ZyRJ+xn4MYcjkzwMczBn4NKP+FTFF+ZizsAjNt6eZ9NExjeA54kodqo5
MTFnnP+269X8oB4m5gzcJI4jmd8yD3MGHrLWLqj+dR7mDFzn+uFLu9ryMGfg
FGdMeuXsfMwZ5im98LzKz/u5BnMGHtK18NQemSLMGbh1f1/gyl9ZmDPwLQW/
GmJeZWPOwE0k3XyzuHIxZzx+qr9T/XQm5gxcSKDeZH4TE3MGfiRUYtL5G3mY
M3CHaI7MD9xknBD4sewlXSl2+Zgz8EO7VptvTcjHnIFz9Sy4nDqcjzkDfy/7
Nefq0gLMGXiHQLkPva8Acwb+Yaduu9zdAswZ5gsVRr5ZaqRYjTkDV9Cbv0xH
joU5Az+4PjetOyAXcwae4HfV+a43E3MGLpT+9qf2wzzMGbjaj+ZzMZb5mDPw
e5stI97X5GPOwEMsSo1VTQowZ+Cv3ilI7vMn47TAX4wsVbvVVIA5Aw/n0Ws9
N5OFOQN/6sZdLGfMwpyBawhxdd49xsKcgYtOkn2q487CnIFr8c92XvGehTnD
vJ15bQ+F7LMrMWfg/DkHZy4MKMCc8fjQ8v94O/IwZ+CCnjxKLxLzMWfgvJeb
s5YfL8CcgWvOoT3Cu8n4BvC6QfcPZ0xZmDPwqFk2zQsek3FR4EIHPkTNK2Jh
zsBvaD7hCR5hYc44r+yAsb2lYiHmDPyn46HpovqFmDOe/w6/8+C2QswZuFvK
ID/fsULMGXiG/Lujv64UYs4wf+ZKeOUyna4yzBn4bKt1kdIi5HoGvo0e+Sk5
fv1AzsB/HL6nZanPwpyBJ+n9XDI9kYU5A7+ve1FtpUgh5gxc087h7SnzQswZ
uNQc3opy50LMGXhg5ZmG6IBCzBm/T5zf746MQswZeKp3/cplX0nOwP8EPgjs
6iE5A19w2eRVNEcR5gw8O7584we+IswZ50F5b3j7WIjUraCedfOBSWl8TAnm
DHzpF9tYjlySM3A6vIbm/cLCnIEv3rdo8RSTQswZ+KeNBTkpLwoxZ5yfs8to
6sxKkjPw7Vt3zOblJOPPwA+9dXgqKELqO8CvP3syx1u2CHMGfnhaU/P9uUWY
M/BbQUfFniwuwpyBi+8+/VJKqwhzBj63Unf4ti7JGbjDKQWGvD7JGedZPb1W
ybea5EzrSZqrhIrRLSrU2mA1Ms5/X84hydxajK6vOuAq30PG+XeP5qg4CYnR
+g5TD5z1I3W9xd8UHvonidJ77bv89jiT+t1o8nlOpr0o/VY2o15bgdTpLhi/
KZdmitEpJ3tmxPZUY87r542sMnQSo8MeDWVmi1dgzjDvyHc2o/zJu2LMub01
RMa7QpTm5AvSqL9K7hvxOXy3klxF6WP+V2p7jXIxZ+1NaruEmsRo03mlTYf2
k3YdH7veKvdbLG/5mkzMuUKsQdPaUIzOr49zCB8m9ax3P3VfufaK0hXXzFvu
25G61bkS76mh/qJ0f1ftlZV2pG4lOvHfRei2HKNHW5RJzvUnX25UCRWht7ov
mMZIJzmHW/5hmFuL0Jd+FRVIdJK61VV1C1UnIRFaZ8/le4WiTZizuWjQE/8k
YdpxgOoz0qjBnAuelxztlRalfd76D6/dQOqezy+pfpFmitCfjnaZSoSUYs7/
5leI0Icez+K5cp5czytWfouwVxGhuQaLVvr6MjHnKbLas7wrhOmoc+ou5z6T
fsrtQJu+Rk1R+v5d+8sWB0md0epWvI1Qkwi9dGBk8g2a9Lvn2YkWaHqL0L1p
gqv9+8j4xsB/9susDUVoe+smh6poBuacOzfjrWuvMD14oYnX1ofUrfa3nLlc
YS5MzxsU/KkxneRs5/68bPz70ltXKlZ8vkpy5jM1CzG3nkaLTRbs0h0hdasA
Ic6b/klT6QcXdWWmO5K61ZqCiN290lPp7XzzoxL6Sd1KvpdrEtNemFavcBiV
u03qg92fdpzolRamm6bWyU9eTOqDl/YdStT0nkYrW5Vff3ohH3OeqSTj7do7
lV5/SVRwTlAW5pxYn3+kwnwqraaTFsPjRPrdVcMed5Jcx70/qxwJvkTqgx+q
W383agrTp3Q/MTYfIvXBfkeXHGnmNDolUHXnahsyXvdYR9PfXmX8+8hF8NRS
ZFxU+0+zU5LrVNrD2MGsXZyMPx87t26BtaEQLbr/qu7hITL+LKQ9zB3qL0jr
Hff+rqFAcv7YH1w9/vfRV5IbWN15pG61PmZ3tLn1FHpU26JwZRipW7WfEXH3
TxKg0w69E9e9R+pWjXdtdQydhGixG/HKf16T+qCLiYSId4UgHXn2dvgTNfIc
VBTMaWvUFKRti+pXuLVlY86peU5pmt5T6KSUuvseiWmYs82dBb6uvQJ0RLb+
nueXyTjSjleX16iECtGRO1g7Hl8m9cGhPUvknISEaNtbt5SEEpMwZ1+F+v5c
e0E6UcbztJIvGX9eUedVKM2cQms/7f5c5EfG+av91gTaq0yh7+YdMbTcR+op
YvLvrYSaJtNjJf42laUkT/OXglNC/fnp+90a1oPdzZhnz0Q9nY/2HbuTKuJU
g3l6TNzP+Wi/JQrXf/wh9anbmukHeqUF6Ge9Iwr0C1IHVPl1mjJ0mkwfZslH
1lTlYp7Z7HlZj5PXfzu1Ph3zPHC6sqdRk58+XWJuO6syGfOcNHFf5aMbf1lV
zEgi458c67+eqjAXoAUCvAPc35I6oJ+Ah4lK6GQ6YOFWeREPUgfUZ+rPcRKa
TEvfE/6xuIbUTepu947k2vPT6u4OpUncJM+rE88XPnrNtAMK8x+TPOMmngu8
tCMf60CoL8mzf+I+M4mu4TwtXiPY9D/zBHjoz3ctxQMNqjDPpROfz00brebb
3KP3CfNcNPEc5KUnFX8wkPxD+h3/7sO89MepPn4KBzP+5347iX5hKDt54DwZ
f/t3X+WhxT8Vvwn7FYN5Bk38rnlokefXJh22I+P2byeeR7w0b67bjOYuUu/7
N1+Yl65dJqcoFEvqUE0Tz51JdF55pPuOQyRP14nnyyR6aJHhrZdXSJ7KE/c3
Hjox++EUgzByH9h14kCMvQo3nRP+XE9qLbkPDC+Z4ZHkykX7iSbYsjJJHcq3
J/egUBMnvVnr3qxpzvWY8/KJ+dGctHuR9cNnueWY8+fjC6VC/Tno0WiHRbmf
SB2qxNU53dyam2YtFdN5fTULcz5ppP7MP4mLVvyx9LBEeTLmLDJRd+CibR9N
m7NTiownh2U+3GDoxEn3XVBq8W0Lx5zNbvyn7F3BQeupLj2y7CmpQ6179rRI
05ubLrgUHZ01mdSh2ifmcXPRMZ6hipM9SM5uMqNXK8y56ODpNjrRm0j9ekFV
6HaVUE7698dMrgNC5H6b93SPhpMQJ12z8s68M08ZmJvzhJcRhtKTK88H59f+
T510iFGvYSZWN78Yc/uX/yDDXrtr+VLhdMzt3/1hjKGg99RG+jMDc/t33Y4y
dr+bxGpyjPyf63OE0ah/P2zlghDM7d91OMzYH+D+0MwgDHNrnchhkMHxJ8ti
bh+pk3avHhht1OSgR/gnW069TnKTm2jXjTG4pI5r/l5Ifu+7J9oJI4yyjqyp
P26R+RUvJ36PwwxaIeDZ+9ukPVA7cT0MMdZJ1qeulk7F3JguU29XmPczfp1R
7MpfUYW58U/M9//FOOh9fNUCxTzMzehaWYc08yej7zZvRs9IDOb27/ocYISV
nOv5NoXU4xwn/o7fjPgLR6wyikg9LoY97/T24oLv0X5BmFvfwoBNhk6/GPMt
U98t84rA3NQn1hn0MUr2Rmbu+0nq+CoT18kA40Nq9tz3q0g9zm6iXvmHsbTz
uNXCDeS58/7z2WR7ld+Ms7L333zIIPN/2ibWK/xi2BxUrq20Ie3V+ZUr5UP9
+xidl1Vdoj+mYW4qQY/z7FW6GZxtK3aU/SrD3N4EWi8K9e9k6NwN88gJTMPc
JqYLS7cz9M1WjNxVeYu5Xedc9jzJtZfx7LuMYuVLP8wtzfmZqbXhD0ak57Po
XPVXmBvHxD89DK5og7KsLeGY28XRrL2GTt8Zqz01RAdl4zC3PxPrP9oZ0r1G
l5uvknkmJ1WPxrr29jJqVspKRj4m9bWIifUfPxgrHXhW6emSdtHP+UulmfY9
jOsKIbG21WQ+24GJdSRdDN8LIftoKh1za7HsH5BmdjAiXPs9n5zIwNySTERv
qITWMTx2aA8qLSzE3BweRRRWmH9jZPU92SdNxWJuB730H1obfmYkumlY+YUE
YW7P3nb+1PRuYWxS33nT3/sF5jbjTeQWJ6Emxp2Ua8Y+h8IxN2/2/OQjfl8f
ikrEk/qCv8HM8e/F0JVcMjN9LAVzk6RERl17vzBG9y/2NS4l86AchzapMO1b
GVlSF56nN5F62cCAzB2hpibGQ8MZB+WfkXb7+T/1382tGxh91nNntQtmYG6D
/e/NvStqGVOuJlzsMsrE3Prb6w6E+lczQr4p98htzsLnhUm65PGbvUxG5Kwm
+ljyV8xTN1lj0LuCZmQfbMsWosm4a0S13nS33iBGx+jrkxnnSF1M/tyri1d6
n1LqzuqBLXdIvWb3fdb2Js1Sxv3BWt4CF/L7DZaO1680ZzF2T/N69kAlEfN8
zp6/zXHbuNPEl8zDmSFbH9ysGcX4/uy34Ilh0m7k4HCe5m9wMeXEq+XvHOoz
ME/JFS/ThZrKGAn2RecXvid1MallC297VxQxFjYZddlKkf7m0iNnn2t5ZzOm
VRbY1JtnYZ5H8mdb3OpNYJS92nNq345szLOI89Tze71PGbI/BdcGGeSQ3Kp7
piW5FlMWZ3/ec7BMw9xW1exdp+ldQXVlGv/JX5qEua2vL70e4l9N1VvGjQxX
05hb6/uenOu9CVTIYc45vUtTMLdJO3Z+Xuo9/j3E6qR+CKRhbm7s+erhPne9
9awzMDcvjQd1gk1lVIur5IX/tEm/xleLZ+b4dUiN3rA/XBeVjbnxDgXPadCM
opoNbmWH2JA6lzN3Il+jZgYVmz549vDtbMzt8uSXF8vNWdRd56hNZ11zyLya
m6mOjZqlVHSBpLO/TS7mluSmEbnL8DPlpvdfsbscE3Nzy7tk6p/UTGnttnlJ
25HcphbEdOwybKM0jgRLJHWS+94DVvet8fsA5bW1sGueEamnBJ18XeNVUUuJ
lkmZ2oaRutWi09UXx38v1DyJmsrdDWTeVwR73n6IsF+Qqx/pp2idM43NtW+l
bu1p527lIfWUBMebm8bve9RZd74IqbmknuK77OyWsbEa6pPisfCddWR8Y4Pc
6bXj9wdqUqKVUUw2qVvlzwpuchRqosp67Hia7zExNxOF5mvj9x+q5EPwEYvl
pJ7CVJwlP36fp45zjHkVf8rD3C54X13XK91LsYJTrYMkSF115XQ5H3Prn9Rg
bI7x5LAszG3sYUJLiH8ftSlj/9m8zBzMTaJIRXn8fkuVlGnUrDlG6lAFrWF1
ufY9FIdJbHoEH+mPeLDXL0ibT9J9t57M/7Rob7s8fv+nlii8qvIwz8PcxOxd
Cxo1+6iB1aqrYpRJfWT5efrHKqfv1O7imYoRU/Iwt/gLA+5jY93UHYdjjXvi
SB3qmZ6UxPjzi5KglJcsM83H3HYyom3Hn3fULLF2b8anfMxtpr5l5Hi7gsoJ
X9Rw0IiMw6sZZnz3qvhDbfBl6azUzsHcfqbbrOiVHqQ27Q66YZOfi7lFrx5x
G2/nUHf3XL0gfpDUO1IltmqNP9+pniZDGcGtpK7k8vjn9fH2AJUcaRm/2onM
51zDXseRXdWpqbmbjD/w+agqjrc3qNY83xmmUqTekSuV6zDerqMcnlk/Eook
9Y6SDsWZ4+0Zag7n2anWhaSu9OAI4/B4+4dK+hraUmBSgLlZft8RP95eoky0
fEYdEkhdSfTYH77x9hUVuMvvvr0MqXcUd3lvGW/HUt6KUYWKJ8l4b+sPXk9N
7zGq3qZnpfoAE3PbHP+pO9eeQ/+/AdvI/+aQ+kXMwCzJ8Xa1/lut0YqyDaR+
cS7T53OI/zAlYpCXXXGV9NeWGWmpjLc/qbuGc0/rrS/A3GCdS+srvTCBDlIn
qnkdWz/evtVf+zMw6tsRMg6p3zhJYLwfoZ8+N6QouJLUL24/3c8Ybz9TnbNr
ncVUSZ3IWIZr6nh7m1LuL/yedZ3Uififvdg53j6nhH0uGtDFpE6UM1P3w/gX
o8QUjy6cPYPULzJYHcMh/hz61Y1Vcx9uKcTczIpmPx3vr+krv577ubCazDMJ
Ez6VKs3k1rfVrlpUXVqAuYlYpLbm2vPou+3w3/72NalHSC4/pjfef9E/mlyx
oUiYRdrD55P2j/d39MdedXmse0rqPp/Z64BmzjiqdY2P1COWD22LGu9P6R9M
Pvrjig2pR/jqvqsa7+fqK/NOTgkOIvUIv9mb1Mb7a/oHt0mKXV5I6hEc+19t
G+/f6Qtv62DWHyb1CJu3PVfG+4P6m7KWfpzuT+o+jCa9d+P9R/3TIUVXb30i
uc1Svsca79frb/TqozaPkNw+zM2yT3Ll1X+2o8exdC2pL8B6nMoc82uXOUl9
4Wjg3gRpJp/+6JRLaW/dSX3hpOc04fH+tX72vmcLeFVIfaHk0y7t8f64/o1P
k9oSrpPxq6XsdU8dur1Dp1gkt0eWgzfG+/v6e8umCmycROoLvx+sDdb05tO3
s+IRuSBH6gtDF35xeVfw6A+knzvG2URy25FkON/QaZJ+puGvC3Z8pL6QOOxp
0SvNq58+8mdvhxSpL8isrHX0T+LVF+U99Ov6fFJfuHBpkZ+5NZ9+6cyVO7yW
FWG7LqJmu7q14WT65FXlU54/yfzJKva4zfJf1Kp11WTe9Qr2OE/FvEdRl9TI
vKmtE/3BSbRshiGtYkrO48wer4iJNvvTvYCcp549vhG4pS3bbGsTjlfwTIxH
jTH2Lnd8/O1PO/Jidv/RkzmgGBhCzr9qYvxklJG2Ltg9VoLMl/Nm90MjtJ39
BT614HlMJ8YN/jB4q9supOwm55/J7mcNCF+Oz/pD5jfenVgv/pvR8Gpm2s6d
zci/sftrftbGR++NkO//5O/0HOlehm7oL4Hd99qQ57P7I5tXi7ht4ibn/7cc
tIdR1u4ypWh+I3Jzdr+GMzfWmhnagOfJMLvOGG//MJ6WXfKfd66V1InY7XYn
a/uhY5nEi77pesUmzUZGjzDPQoYnma/SyG7/F3EOfU8bqkUvduz+QqCA0ix1
6SL8HXWy+xfc3zaNmnol4ueGNo78GG/HMgx8F+/wkyQ5246enGj3zlDZ0v5q
BZl/223/r/289EvWkz9rs/H8Yzr/2tveefaTjyyLxPNs+iil5VVBU1xv7rq4
nyA597Lbh5L7PTNOHSe57Y8YCbrRy6TU56rfDeEldfZ2djvT8dDzytPB5fh9
0tjt0pld8ef3LSXtySh2O1ZC6gSLoR+Ln3stZ4r4eP+RUukUp4I8iZdmdrsr
60rAlv3H6vFzeZmrwxs1G6kau8uJacdJnXQvu/3G/LRqeZo2mS/0jd3ek//w
sXG4j8y/7ZrjuX28v09RwQM3KPc65PPY7Zbpg+mv8jbW4vnjxZqGvCp6qGt7
qgVXWZLf+0F2+2fdnwXZXenkef2W3V6SV/rgufE5mScZbHDHvMK8nzp/f36/
n0AN8hr2c3/G7osS1dfJvJHjaXNfjv9eKGFrpzNNHgXIZdnth8tnEsV1D+bj
5+5gtzd8B/fqzi3JJvPnewp+OgqNULtnLNjCo16FPI/93LToCzgqn078zjlx
eNX4fYDyU2pdvCYnH3kJ+/nbS3EpbF1D5hfdM7u1XqiJU//xwpap00oqkCuz
ny+3CnyUtN6T+QNdHuUnk1y59MNd0xe6aJG/K5P9nEqI2R0+LEvm1bQGzJO1
Npyk/67eONtLpoxcP+z7sJBh8urFNuR6MG45t3r8/qkfbPZUkSXKQq7Avp/P
rM/WezifcFhPbX3utFtiP/m9w3rq8rnudjuXkPsVrKf+Zk8vqe8h8wNh3bSc
ytwfBcZ16AX469kS9I+3ZH4FrJvWMy3y0gslv2vgDxlpcyO7yfxPWB9t8P7u
4Zm/yPxw4NfbJpVcVSPzn2F9NPNOnek7bvI9YR00s3WKwI0XhchhvTPTTsl6
QyPxDu3AzqNaq7aeIRzWO/ucbr/Np0B8wfplyzm/fWcuKsXjgQ83Rb88KkPW
R4ux68UrtyUJr15M3tcBXEvB9fzV5WQ/DuCrF3PLlwmS/XSAP8+IePXhFtlv
BfiwYox/8CWynw5w6WxZmTtfG/F9LMAFV/QN2DmR/XSA3zvp/DY05Au+jwW4
nni5IocQ2U8HuJOYIuOKM9lPB3jVoEh12znyvh3gfsbqaZ/lyX46+PcGp/Mk
Jmfj+1iA+2ron76kSPbTAf5hX8inswvJfjrAb5aqPa1OS8X3sQB//Fkig2LS
+D4W4OuvP9zpvpC8Lxq46M3FYqXhDFzHDdygdMit9gx5D8Bhdj1a1uP7ZsdZ
xC/w2dnvKgXUiV/gNVyd38OayX4NwOVvm9SECRO/wIe3To/PmEH20wHuoPa9
KehrPXmfIZv3iyQp+el9Je8zZHML6xdzwzZWkPcZsrmJyzUpg9Fi8j5DNq/d
ovlmx3HyPiXgH8RmPio6wiTvM2Rzrg6+xU6+WeR9hmwu/XZIhotOJ+8zZPMj
8edKpoWmkvcZsvm3Wil9xTU0eZ8hm18dcLAIykgh7zNk84G1ricsi5PJ+wzZ
3Prtj43U5WTyPkM277C+uuapbzJ5nyGbJz3/JdnBm4J+Q9j1bqNVNlem8BK/
wHXMggNPziZ+gTsaGfsceE/8Aj/eWfryy2ay3wrw3Y2GSecNmtEv8Od6PIu8
gmvRL3Dj6B0tlmaf0S/wsP6IKzLMEvQL3NNh5pIZT8j7lPA89OmCvo+56Bf4
b9uuJ2eNM9Ev8FErKasu6TT0CzzdP3nBtmIG+gW+p0ygerlQMvoFXhTwfPT4
/UT0C7zgnevCRv5E9AtctmYFl7NqIvoFPqDvEhvLIPtxAOeyMfuR+ojsx4Fe
VCaLbvFKRr+97Dq7V7GFuu/XDvQLfIFvkGjTVOIXeGGUtPziteR3CvzKE1Wu
Kb/JvirAN/5q9ip+U40egR96eNR4vnIZegTu7LBz4RzxIvQI/JbBihDHn+S9
o8DvZk+NepmZjh6Bp5xsLB6YTaNH4H7Fe5PnPiDv/QaudeLK9w0/yHvdgddN
61vD20Xe2w+ck6m28vTkOPQIfI2koMrFMrLvBvBjl120ZLnIvhvAp71VDSnZ
QTwCb3ER5C1PJx6B7372cThWhfxOtdh1fLfv4sMGL4hH4MnPVoys+0723QD+
uNeG0yuM/B6B86s4isWuIfunAH/Ho9j25jXZPwW4eql21nAO2T8F+Nuc1xve
HiP7pwD/dCKr8o5MGnoE3qnW+obxhrzfG3jA9ugEt2Mx6BF4v8lwOFM8Cj0C
10+x33u2nuyfAnyrneXX6CGyfwrwmBln7PkiyP4pwLd1e1z3eUE8Aj8YtEc9
+R7xCPxNcXVk00GyfwpwI6WhyA9KZP8U4GMNQfSNFPI87WPXtTdJSPXd0yEe
gc+62LY4L5Z4BN7pPWvLqjTyfiHgz2tmCvzcTPZPAa6tZvze5Go1+gV+wOy5
j64d2T8F+KT6RSbpN3PQL3DxJ182rXGi0S/wSzy/9g5si0G/wLUWtCdqOIah
X+Cu3sbaH9OC0S9weZstHSaqZH8N4AZhTVEDkWT/FOCNAtZHrZzJ/inAx3sv
0pPUyO8UuLXJQxeXQLJ/CnAhDevkmjqyfwrwkO3tEg9ryf4pwOcWr2o120ze
kwP8ytrenYpKqej3IrvObuj9ZIXq83b0CzzqZOUtzoPEL/DjrYzM27vI/inA
K3vlVXT31KNf4EHnGEJvVcrRL3Cd0OMDLCPy/ljgJRvv2yzuSUG/wP9ErTsd
1hKGfoF7awQLrq94jX6BRxwcqV706g36BX6K/2qiTf8H9At8k9WF6blKEegX
uG2WoYRtSzT6Be4+9dO3Awvi0S/wvsiY057D5HkKvCD9dnrXEdJeAu6k1rr6
pBFpDwPfsOOwEp9mKvoF7ns2rDyGLw39Au8WVxntTktDvzzsur/ax08RTslt
6Bd47imPFVZ9ZP8U4LPZ7+8Cv8AtM0a11Bq+ol/g6mHMnmVt5P2TwNdy1rpI
HKXRL3D+2MBjZSuC0S/wUuZanaplT9Ev8Ju21ca/j/qjX+Dzb0Ro3fgajH6B
6+7VtKtRikK/wGuqfidu2BWHfoGrrv3QNas8Ef0CrztoZeqSmIJ+gR+rLn4w
5zFpDwN/lvzW2+A16e/g33tkiEfgThr6Bf425Pb8tZvT0S/wYC3hai0+sr8G
cM+jTMOuNxnoV5I9D2H50ZI9bnda0S/wbxkbleqtyD5lwLcIZJ+4mk5+j8CX
PR3eWqgaib6AR6wtNJ/vF4C+gPfbmuY/e/UBfQFf01oz07Y2En0Bn7yWc2Sw
OQ59AU+zCZkR0p2EvoA/eZPy+rM02U8QeKSG7duxU2S/SOSOtn2Hvcl+oMDn
VXJ5eN4i/VM8/uXJOf5WZD9f4J8invk7TiX7ZQDf2DFzteXHTPQFnNGYXKOt
TfbLAO5ksmf+xogs9DIuUezvfAaOHr+7Vt7kfXrAd2XsP/wlieyLAbw8udpm
5qki9AV81bVDi433k/0vgBenJX7/9jAGfQFXzXjBzWGUiL6AGzhUz+y9wUBf
wG8seFBR7pyKvoDPjV1lINKRhr6Ae53aatogRva/AN514sxGKQGy/wXwVlp+
dnUlGU8AfmhvkdmlW2T/C+AR9c6ey2aR/S+Af/+1KC3Pn+x/Abwy/uO3MjGy
/wXwjNMNOgscyf4XwK80jEpO+pSDv69H7Lr/Gc7iBZ3STegRuIfnmPdzP/L+
Q+D7+obLSmTJ/hfAR+1l+VT9yP4XwOdmHOnYIMpAv8ANRbYoW5xioF/gjSMf
J/V5kP0vgM9r3VRaYU72vwAe9GW06kg62f8CeNt9o1v9XWT/C+CvgowF9evJ
/hfA//Bf0JkeRPa/AF61WqDNwJzsfwFcUajJRrya7H8BPK3JijVmSfa/AD4t
OeSuXDzZ/wL418/fB+6LMNEv8Gp/vwzamux/Afz5j98P778i+18Ad7rtK3L5
GxP9JrHnIZzqrLdyaalHv8Dne5yqtL3Qgn6BP30dVld8owz9As8PXS9ffJ7s
fwFcXG/uLeHadPQLXJYnNGjO9Ez0CzygRFAr6HoW+gU+pfX1VtO4bPQL/NtT
v3W2IaQfCjx5+w/q0CkynoCfa/2Wp1eUjBcBr25et7r6Idn/Arj0t6FHoVxk
/3TghaminjrWeegXuPM5b5r3I9n/AvieCIdT2V1k/wvgW34Izb2hko9+gfPW
+CSVbM9Hv8CtbI5f63Yl+18A/71kkCoJzke/W9h1Cs/2O97Kd2vRL/AdCy/y
OSuT95QCV7pwVGnXC/J+TuDmbdT5e8rk9wv86ZJ3Gw5I5KBf4NoP9oQ3aOSi
X+A5Lfk7s9SZ6Bf4badFqe+HmegXeGN87OXNvnnoF3hDzxm/S1Jk/2XgnTu+
7re8QvbXBh5pvOlwcjHZ/wK4+t7ipWOSZH8EzOdruOpiywL0C1zxRPC9hy4F
6Bf4/ESbV63BZP8L4HcH/A+cLSb7XwB/+1t5lkEv2f8CuNHDY6vEppL3lAJX
2Xvnzj1lMp7PYteJTlh8FdaxrUa/wBX2vDV28iPvcQWeddJsoTnNRI/A51+R
tvI3z0OPwK/lJlLiCmQfBOBnTxbWNWfno0fgDiIjB7auJfsgAL8s5rZf+yPZ
Zxm4q9p16ZVDZJ8L4Ds1Soa/LCf7IADPMPygXHeM7IMAfMVtD2fupyz0CPyr
TeZRzRSyzwVw2TOpGs3VZJ8L4N0v1pap/Cb7XABPNZWLYwmRfRDw+2dmpTsp
kH0QgC/SU+kMVCf7IAAXOLGdN9WgED0qset3m99Wx1+Qq0SPwM9nv3p2oqMe
PQKX7LwkJzecjx6B7xS457PXg+x3AHzj2ObEWdJkvwPgawezt5xwIfsdAM9M
v2yvV0L2UwbuYVOk0iBMxm+B6/JI3LpiQMbngfdwx01xtyP1F+ALz6XrnLpF
9jsAbt4tdeLrK7LfAfCz99xrOOPJfgfASx25N6Tnkf0OgO/eXGeSV0X2OwD+
uCOq6Wkb8QicL+1z8cNfxCNwn9+OSpM4yPvwgfO/vbHYl6eIEuyPd17l9B3r
ZT9mt79/pN1J6ctqeP2d9wb8573STOFPNdRg03KZJk0OrOP4PFvum/35M7Wn
IMwnyZXUoe5cUy9Za5FNTXO6ytWkKYpcTuu51bayDOrMxLpQUica23Pu2q0k
BuXW59xwo7cd6zsfr/2KVZvXSWkt+r3sRu8X5P2auUtO8XRSHC8K6/7OwwO+
mK61vy1VRe1Uvr3q7zwz4F/8ad0f6WVUzKX54k2aPMhZ5e8mFRR/ojy/b13o
XUHqLC69YY53Z6RTlI/KoyRXUeTXKxuerDVKpb5PrN8QRy5UcXt+ihBNvZlY
d0TqIwPpYWYrGpIp3p//GeXat2JdY+6DG3OshTuppQtujE1pKkN+IeSnT2dO
B/VET0KrXTMK6xHuI4eXO+e1U2lyR5Y0aQ4jZzp/5YhZV04lHag49HceGPAK
veayw+PPQckUR92/85yAzw6UtQg5mE+d/Fv21eQn4/wGs2++2JZNpQmN0fYq
pO6QKR/P/ccrhXKIL5znXSGK/Ae/yc2O60mU3H6/B0mu4sj3HroqoOSWSOUL
nxhq1CR1B1qY+fDR1kSqbGL9MKkj6H79FJZOJVPXfkx9L9jUhHWBngv7vt1s
7qBUVcQyH1QUIY+7vmiD1b4Oatucbo8WzQwc59eo2MirXt1GpSlfnZ/sWo/c
dz7nlegTTdT1l/xX/s4jBL74a9v2m/afKNmJdRqkLhDg8Z+gfR2TcpxYXzEJ
uQaP8xGnJZlUycT8IX7k0rIG8dyLUqlFE/cBQTL+X6G64hx/MtU7sb6FjP9n
qiZvdb0QR/lNrEsh4//fZh82mmwUR/2bLyWOvO2mBa9xZRx7/RIZ/9+qIWyg
VBNP/Vt3RMb/BxbJhukrJlKT2O/BBn6pnCPj6ddkarS7bMrf+UYwbnz+Rub0
l/4dlNG6VdM1vLORH3ZnzUtPaKeOLijh+WLOwnH4Xp+A9y8qWqi1KgnZTkJk
nD/886Glg6F11Je0WTf/zmsBriAX2TVtWyVlJP+24O98TeB7DtqeoYVyqcst
p+L+zkcE/kLn7Wm5u2nU57/LGaTJeL7qCvUb1JokaumjmB2GTmQ8P8W/In72
1xjKY+L3K4h8nmluArU9ijrzd/mDNBnPr36sXc7LG0UpmW5olWaS8fyYJ4pX
XCdFU58GZC0Mnch4/vrO6eXhQTHUlbdd8fYqZDz/c985uV334qiFFgxF7woy
nm87sr7H51wC9W8dMhnP7+QWZtSbJVH/1oGT8Xw/7VMj56ekUJoT6/DJeH72
zfIwgXcMqmW9YnS5eReOz/OvkuQMGfdl2Tvq+Hd+D/D7OoFeXi+zqYA0JTGm
PRnfpq6/WbdULpLadKzvQq+0KHLGQEtuSnU09e+9AGT8uTXexevJUZrau65N
8u/8ORifzCiZmZIv0UGJn/LN/jsPCbjBiNje5LoEqkn4uGaoPweOZ370KVsi
1x1KldczA/yTyHjsTWftd7MbYqjr7r7TmPaiyDVE6d/7OBIo9eVHHHulxZEr
v8i0qolIov6914CMo/4nbWhuszKN+sbeTwHG2aRW285nrWynyn9qS8gwh3B8
8vh/ESM/JYMoo4n303HiuFxe+JnJe4+9ofwn1nHxIPcXke72uPqO/dwn44qT
9fx8olWS2fumiCLXaqZHrn1msN8TKk7GCe00gg6JpFL/1luSccVpRvu82wTT
KGn2vg/AjTnFTEXNMqjt/5376pfUjOOBAvaLNviPtFJfShoWJroWIz9xXUJ5
qXsTNVqwIeVRBY3je02hfHtVNaup70Uz+v/OnwP+JYdTseZJHvXkdKmtk9AI
8uTDrRHvfYKpd55Trv+dpwXc2jkmoftROMXV9nHz3/lVwNs5rY2rOGKpXfqm
c0P9+ZGvlLp0+sOxREpbSYplbk3G96o7fi96Nj+NamK1aTkJkfG9YGf1QLXF
6ZTX+YSX/kniyIXXlj/SEsqgDJTv8DPtyfje7ZVZ/sfzM6h/7xH4f+N7Lvsb
Yk9mUusm3pdBxvHK783iPnwjiypbo6ffqNmI43Uhduob+3e2UK/8G5pdepnI
m6fwLdB7UUcJl6pp3O5l4vjbkrvCCWt9iqkTxRZeTZqNyD/zruDMSqep7scd
R7wrepDzZC/8ZqEVTW3/5RD5d54ccL0Lz56HvE6g+IutPvyd3wbcodzrsE15
CrVv3tDFv/PScDwwyrVERCeVSplYH0jG8Xrb+NMWh6VRUhPzaAWRswLX769r
SKfsDOk9KqFkvK7GYaldYGwmJdF9n2luTcbrQo1nLbY6kkVlTKyzJeN1BS/F
78vwZVP/1g+T8bqvth/4O+9mU//e70DG686nxRT7cuZQrIl13WS8zrFEOULe
Loc6P7H+nIzX7TN/d6wgLYc6mM209q4g42MbzUZnxr1JpTpiH92tMCfjVK+P
Zbo7bsmhxiben0LGi3ZYqV3UfMuklrH3j4DxhOXyDZUnFzRT89YeDP67bgTH
PSRKKVlGFuUwsa6PA8cf6meqzjncnE3JTORJxk9O5JvkB4rlUbkT62ZFka87
NXfw1RGyLibpf9bF/Hv/Cxn3EN1kfGaGez4V9WJG6A/pdhyvWNZ4X4zPuYHq
yOEe/ruOBbi94qIOZScmVaT72uzvOg3go6vW9DzSyKNUvVYrMO15kLusmRr5
LSuPMvnTGOnaS8YHpDITT48uKKAGX0fPDPUXRZ5fp6egvK+ACjRzvVFhLo78
07oYT5kHBdQW9rx34BvY61P+ve+G9OuzRuQPnZBgUerPa0T+rs+EfuLczTr/
BZ6rpW5fiXrUoFmKvOFElRl3fAm16vu2z3d6E7DffXHS799Xj+dR4hfCUr0r
apF/M+XtbJ6TR3009lsX6j+MvMGE9ZpHsIBSu/jj7N91F9ifLeXvU7xUQN0t
ebD277oC4CNcy0U7ywqolol1rfzIqZjHZ3NmsqiLM+7+Z21I+t3XWxScRYJZ
1PyMnWGuvaLIax+u/bCDxaIqJ9bhiyNf6ru/P7qdRblOrG8n/e6cydoRwtyF
lCZ7vQBwcfb6lH/vofh//esVi5u8lxdSIb4Bpx2FmrAfPSgqd2v38y/U5IHr
caXmLOTqWxbbutwsot5fvL9Hxzsb+79p83lnuQkXUE8utllbWDcg79pz26vV
oYDiOhprybTvQZ6xMbaX/l1AHWOu8Pm7zge4gFmEZGEKi3qQRL34u44F+DFB
58uCnIXUd7G643/XaQAfKjt/c3hpIbXW/pqBkxDpR8f/ulx+ybqQej3RPhFE
nkvJMZc5F1LBOhpVmt6kv5wtYOy0LrKQ2tHIvdrakPSXZ83cydeRVUhNvl/6
0bVXHPmdhosPAv6vrjOPx2r7/nhRkTEUHip+jag0kkRbUVIpQ6aK0qRQqNug
lEopiRLKECUNUkKkzGTsyZShMiSEzJHoquh3n8dZe92v1+v++355Hfuc55y9
1157rc/nfTF5sfz+pOgw3C97vCnz4G8uJsM6OLhfDjsXMd/lWzGzv2VRvpnp
c0nn6kDhfnn2IqtBW94SotXtIrLU7z3dR6QODp2pWtxCVDsFylPdS2l8O6rm
6IX3674QU2Z9gfjq47HB6cp8bWQbs74A39O34uCAdDPpqMy7GxVWQ+Mu9ym/
RY9PbCPxzLoP3FK9g8fLqJWsLxpe94GveFQxe35MI2lkfK8grnBifNxSRvAD
DH8iN+xvBfwY4+/WIf+//ADDc5lxwjpr5nK2K8jlC+kM1j+2ndMnwPChvtvK
fdNLya45c3l6Zdoo5y3ik1XZkUHKmfgW1gXDCc8172xrJY0B1RrNKuV03Szq
+HD0T3wh+aTYu1vV7wvlWhdSZvQJJZPUsMuttgp4vvN3WE6BlGMLaWf2O8A3
XTfxqtrbRH7rDe93gBvU6v0SX1xDEpj9DvAfLBvP+K7XRIz5fYF/93hkXc6X
TwIuBAi+M6jF84i75wKW99QRfmbfCpxX1aR6YlYlucfsW2nefvwSwepDr4kM
814BL0z4IK4flkOunZv1dpt2JV0vnK6qh/D2VpIJTN4AuKb6w4eF3e/JrfPa
acHfgug6EtXXr/NoWQGZRYbzCcBP3tOMP+HAJtN7u9bGhNVQXljWaHS7MY9I
MvkWmJeCnC1Ssm++++e5yxdw6rSBdzJ1/pOZum74XlyZen7I+8H3cnSasVmq
FtYXwfeilFDrIB6G5zXwnvQ+6FayLv5M84TASV5Fw1KeHJqHhPch8tLY0Gk8
6DsGXKDjgstGl1R6fRj/Q0V/zc6j6M8F43/ssmzeLo8iogO6QyP0yi5XOod8
UomnvFBc26GhrZ38pfPkvkhTBc2bPXAbmiUv0E4iXLcGsu1aKL8RaNob7NFC
Lh/s/srpywW+ucl+UaNIIzHVrOng9AECD++08tW2qyCxfqfSOH1uwCU3jBFu
4i0lQh1Tr703EKB8c9cbxfoXRcSGGwdi3fieJ/smRHmzSeoMIzvhJqwDz/9l
cl7g5ytiVzKtXMUP68BPRV55J/RPPMZy6dWw0pai/PoV+fOWyRkkj6s7hnXg
F+Xf2JxUyuDU87/m6vQyeTBzRmfsuO7Uuovfqmi+ruFCVqR/WitROOunevFb
G+VyD+bMWS7YTNZ9vbKiSeU75TcGzrBmG9QTMU77gx8fzbOtC2rwPve4kNhz
dS4EKJ9i2zPnhuxrkseN30QovzquJ3PlwxxGfwfrool1mUfy7TSix9W1kaK8
4sHWoeP1qeQHVxeJRflWfaf70jGpRIvps4C81jlG1+vJucIybedOykvU2iLi
xD8TIUdFL06fMPAHS82zq7tqSKF9cq2KnyDNj5XJrVeyvJdFFLhxiAjlku7O
tlLjMsmJlJW7hZuksO434lOqwNNkosDVj2NRPnZyU0rgthQizfRbwfd4j9HF
KurOqeb0JwPfFj+vwWbKe+LBzVeL0jyS5e3yTTu/JBJzbv8hC/NaMZ4ak0+n
kGtMvyd81xsYPag0Zj6H9S7uz82Pi+waSQEznwPPv73Bz9+0mtzSTqng9E0B
9zpwkcx8/pacZ/pGgSszuj2fZr/6xOkLAq62kKegXSSBqLvuiuX089A6ui2D
nWvexhB/bt+gAOW3VLTXJmY8Jd3cfB3WDdYePR0Ycy+G8MjkNMqwsQ7Qe2va
0O6zL8mwXhLWAVbKPGVldCURK64OlBTlKo5WP2/JpRIhro4V1gGS+c/uKEv9
M50x6yas466eSScPy9URA2bdBP7wxwxHU+8yYpVtPkOW3Uv5gVq1q8JKeUSL
6Z8FnsTo8ARzbDmt+ChXHfXUz2taBOmXNI4MSxGg/FJKoP660qfEkJsvEqFc
Q8/mAzGMI3VNGvUybKyL0+7VNbgpkE68fYTXaTtLUS4T9yh5hWcGGdZJZFHO
38UOvuaUSUoYn1CIKzrurjE+N+89KWf8UoELBI/WW52ZT+RX9x3i6CkDD8nm
/cDv95L8ZvqCgf+MH9bJMeP6PQhS7ivdKJErkUCecfM2IpSf/rXbIL83kaRz
daOkKHcQ37xsyZdX5AC374tFOct1VcuWB1nEQjlUw17hK12POm2irCq6X5KG
HJ9MTv8e8BnrNXPbT8aQl0yfMnBVRn9GgrsfF6W8mMVjNvA9gwzrUbIoP7JT
SfHKmFxyb43yBFW/H3Rd2+1Z6ysn8YL8RXVXhrkDo7vSV3Z5wd2UZhq3SKo6
xeSrpZNY6UvJHH0K4IsUpfj33ksnU44K86j6YV2KUchUnnPWWWS/eEQpp08e
+Oofm67nl2ST7P169zh94MD1DtqKvx7IIXKZbUeEm7Au5emO5YunteeSE9x9
FtalXDQJGX08FnVOgINeh66ompVCNNafrLD7qnPJ7DXpS+LPM7DC+pOqDqUg
gdTXJHxv5XxnYSnKC+MbeX5PZBNDrh4o1p8IyglrZFizyYmKrEIr7VYadx0z
9xNarZxNDgfOEDC06qX8j7Z7+1yrHMLm9hXz0n29M++M+Mll+WQWVx+Kj/Ib
g/2XJXxekzNcvScBypdb9TuumsMmNdzzQazf2Km7Q1Ekkk1mcvWtsO6iNG75
hb8G3pBhfTcprA8J5jMsXljA6J+yKJ9xzqK1b2cBGXr321aW3U7juneS9hc7
3fKJikymeXTYd8rHB7QIHPV+Tdzbmr5x+vOBn4+aoOmrUUAaVl7MtlMQpNxh
fOhR/lsFRIN7LiZCOY/ezh7vtgIy5uFsM4VoKco11J5rbflYSJ5x9VtZlJO9
6Za5vwrJmQ8q/B8Muui+fkzymTuLst6Q/iDLhxz9DuCbZyyt1TlRQFZx9cgE
6X5588pN0qtNi0gI9zxFlPK9TwuEAi8UMX3vLMql9CWqXZWKyUvZn30cHRCI
9+7+fdcrel8RGWJx5nlRuu/raBF9InSrmJRxE+iR9BzKYpzG29N/t5E1wX+c
fN5n0HOTXHXPx6a+beRE162Dvu/r6L5PwfNnMMcP1PZSitbZb0mUTx/PthPT
ayXyPZyEZhDm2+stU5dlN5OMrmEO88A2r7cJH4zriQ1zfVrvF5C9cIFDMzHU
GRs+O7qe7muaYo9dyIlsJNeYcQIf7DltP0uqimxlznGAT5Rh2c3dkU6+mwzf
L7xXDyc94z20p5S8Y87XgD86GOGn0phFjJj4B37fQKa/WICJk+l5vWdjgc1b
1BuhfZHLHoamy1fReQD4oSXb7XL5c9APgom7PHZuzeoT60C/BoYrsh+5ORa9
Q78Ghi8NDYt7PqYUfRYYvmZ/vF5gSCb6LDB86PzumiXyqFcMcZT5Xp+Pj3tQ
1xG4e8b26GOT2ul4gCtNX9ASurGMjoeeqzZ6j79UijoqwG/aJY+qD8L5EHhk
WkrgpCHUbQOurGouH+6F/lPAl9hNCGatQd0AeG8n/+FPFEjH8QO/9vNsqF0s
6kUAz7XI2O52opneF3BH41/TZuqiXgc9f5ztNqi2M4/eF3CtxxdeLBVEnxfg
ez4M6HToo04d8PUaxtVb+17Q+wX+d5xPxZ6N6GsGfFNpeP8hR9TtBO7p45ar
/i2JPgf4Ttu0Dqi9csTnAPy2b6K1YyD68dFzvbWzzNolG6leAXBX728DJjur
6PMBPnmHgHvufdRrAq75WMjlej764AB/dWd6poI06tQBH1sVFrCwBX33gHto
Fpbx8KHeKXCxHRs3O0mjniRwnk737vwFqMNJzze3XT9kchKfG3CJ5gr1d4mo
dwo85tmXpR5l+HvBPGbIEy575Sn6iME8ZuBpNjn8Ygz9e+D1EYWf/5gk0nEC
b+FX3L7fO4VeB+KucU49B/0b0I8MeHL3tFhV9fv0+sAfm63R0f6URq8P3GOa
W6huOeocAh/lb+cX/yeTvg80Hgs8f0efjXodwD3L7eoaTv1L/4fh3gGfFmSM
jqLjpHXmy1gLNTegDyDwe7HF/ePSklAfj+GiY1PHnPqXvy3wHstqn8KX6DsM
fL9sunLMXdQbBB5+0fZj0H6cP2G9cDn2aasTP+oVABdaueiMO6ua3i9wY7GW
W2sVUG8QeEJz0MQD81EXFHh+bmanaX4yfQ7ApbQ8XqmtxfcfuGnATzVlZZwf
gAcEjlp27WkW6iQzXObBHfE9n1FHHbj1pnT3yCfo9wQ8b7pkobgp+j0BD3oy
WLi8GfUDgW8hXyxkd6IOG6x3R3n2rdhWjPMz8HldZnPKrP/7PAiuA+uju7eF
xlahN/T5ADf17NtyMOkNvT7wazy5AcGbC+n1gX/P15nW4Il6YiPPa+B3hPhH
1H4LSZPF8QCvDl3k1myEfiXANQUbksUycZ0CLsOTNyguifpdtL7R1aiqNB31
u4BfeXHrrH0D6ncBT2o1MT39B/W7Rp6PwPsJ8UMnn8kzz5t4X8DL4kSFBzag
nwjwNdl5MYlfMd4ALrPa7uC6KtTpAl7Hq38pZyrqTQFfllEgY2aMelPAz/xy
vODvgnpcNM6Z1lkkkYS6UsDTyhVi7YpRjwv4KP9jKRvrUY8L+GixdD+HbtTj
GnlOseQ/8pPw3IAfniiipfYvvXTg2vx3t88yRt8Kmj+0vW/5Zgj9FIBbq4jp
/06vo88NuPqq/e47/kbfBOCD4eGh+tPR/x247pGIV0bn0KcJeHlG97z7c1Gn
EbhE094omQbUWQUe5FNbwm+N+rTAk3e0PhrtgD6bwHdWyoU5v09HH7H/8EEA
3qIjOl9AC/0mgG/ytS+Smo4+6cBPRtSk7c7/iL5gDH/VlNRvNRb18WgeMtIl
6mI1+q8BD3g5V/PI/6E/IPBlq/fwLfREnwLghyvZxvmJqJtN+SzJ+RlhqfS+
ID48M8J3APjH7X31XYIN9L6At+S5zikvq6TjB77hi8a274uz6PiBWx1qbvRV
R98Kqj/wOUrJJwbjCuC8V66urTiVQscD8VvICN1+4DNDQqIHwivo/wWuxx85
1dw+kV6f9vU3tT+9fBX1XSGeWcvkJ+E7gnimfqrB7MTfqHtG84pRwfbjl6F+
O/CZG6YGdpigjzDtj56iWe/cV07/L/CSw7u+F2xEHzS6TxyhQw7cQnAw3LQm
nr5XwNkTV244OhCNetowfjOWalcu+tsCb7V6NvXBvmf0+wLOylunKl+CcTXw
nOdVK3nC0K+B5kvfemQqyafR50zr0+orJ0gO5/+5zw3iutFukzd52aF+Ec1D
3rRe3exbQ58bcJE+a/3HPegDBTxP0EpAeQ76LAN/OUJvnOYhvb8o5c17hLrZ
DO/epJ2h1ow67cDvRsvuG+XwnD4H4OmZO5rLDFA/HLjXn1Zduw84zwCfe3NL
dFYt6q5DnHnZue3hnjXv6P3Svt0ix+Z5N7Pp/QLf5FPer5EUTe8L+FD8/+qB
Ay892/7N/Cv6I9D49jmL77Il/o7AXZzDVBJ5UMeb9vOKhe9obECfRIgnVczT
tsXFRtD/C1xtpJ42w9OuvjNasBL11YH73Aj4UCKN+rc0rptdqOVanvAvHWmm
PorJZ8J3CvmK9g152wOSULcKuIliZ7eaDfpvAvdbNSfBRhv9N4FPklVa/3xX
Oh0P8Mth/Kc0DqH/JvBexbxFMs6oYwzcyXiONGsK6hgDF5qxtUZnL/pvAq8r
2VN/0Bbnf+D1EoYdk5bn/2deFL5f4PvWRicK2aGOMe1/lH7SW1mL/pvAHR5d
+rhiJfpvAnfN858S5M+mzxPi2CNicxsdf6L/I/AXHj93TfVEn02a55R/IL8g
H99n4FG6c3Pk7NGfAvgk+SO2x+vQTxM467B7nGUK+mkCDzS/ftZpP/ouAf+t
82JMWy+bPgfgi7VjotTGoi4x7WtLLXE3XIO6xLQfsEVxcs8p1M2j/WJMXgvu
F3jZse9zo5vQXxt4sdTNK+fl0b8S+HLJ0uJBbdQZBu41/muDeTzGRcC7YnVX
NQujPjDN3x5fUGfYiL6T9O+rau8M8KEuK8TVbrZ+Faca0N+B9lUl1Xn2J+F4
gNt0xMls34L6vcDXaQ1YqPiiLjHw8JyQXX7KqPsK8eree8kS7ifwOsB3aUlo
G4ViHAvzp22c+qVZ61EvlOoeOLuxLdainifVB2B09uDvYZ6Jr1me8LMF4xxa
V+DU3X/nNepMwu/+Nb7qUuFB1Huk/X1661WN+Gvp/6X1GLuK9rPUUdeO7nf2
BO8dOlVJOa1TGqFzCH/fy9RR/D+gxR9w
"], {{
{EdgeForm[None], GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJxFmwf4V+P7x895zvgg0URoa9klDe2MotIgo4FC9kr9FE0pMyqlQShJKmST
ZGWvysgqoyVURmUl/9fb+1zX/7qc67y+d8/nfM7nnOe5n/t+37ea/a/ocXmI
oqhLGkUJ54lxFOnvfTjuwzaA8+wsiu6Fz4NnwV8yZi3HZI6vONZxvMixmmM9
x8scSxk/jvFLGD8UPgQ+J4+ia+FD4X7wc/Ao+BnG9CpF0UhuYBj2PvD18Aj4
QcZcypi5jJkCd4Avw/4EfC38OPbH4SHwIvguuCN8OWMWwAPhBdgHwXXhs7Ff
CleDz4TPTf1bT4HPh/eFT4U3wK/C7/LZAfB+cE/s38BL4LexXwjvD5+O/QK4
Cnwa3Jv7H8X9D4cvwV4V+xnwZ/BT8Jt89nK4Btwb+zL4NvhV7JfB1eFe2K+C
a8N94KvhOvBZ8OfwM/BbjB8IHwT3xd6X7x3D947UeHg2PAU+C74BHgUPgG+D
b9TvhW+Fx+n+4fHwTfB58C3wWD0f+Cb4BvhieBJ8K3wRPBG+Rc8TngyPhy+E
J8A3w13h0+Cr4ebwYYnvsxl8aOLf1Q3uDQ+Cm8IHJ34mjeF6iZ/byXB3eCDc
BG6Q+Pl8yG+fGnnOXIX9XuyT4Cvg6fAEuDt8NjwYPg2+Dh4C94AP5PMvw6fD
w7APhc+ER8DXwWfDY+HR8BnwcPha+Ep4BjwRPgWuxnVegXvC12K/Br4cngbf
AV8GT4Fvh0+Fh8L/09yA74Rvg/vB4+Dr4XPgWpp/cH/4Ruxj4I+w3R15XbwO
z4ZfYw58DN8T+b2/xdq7j+Nd/k74t284f8H5dMbMwn4o58e53jrsE1jodyee
59fAXRjXnjEx1+kFnwxn8D2MeY0xQxhzKvaO8hHYb+BaJ2GfhG0afBY8E34M
7h/5nT7NZ/+BH+Czk7CfAU9nzP/glvBt8Aj4OPgO+Bq4NTwevgXuBk+BZ3Kd
ZfBQrvMAvBweDffj307jfvbQesf+OfabsZ+D/VTsu8vnwFfCVeGHGbOKMTcy
Zj78GXwTPA/+FB4Ht2V8Y8b/zfkEjmPgfzjvw7GDMT9wnsP4FfD1jH8QXgmP
gd9h7AMca/i7M+PawhHf+whjvtbvZcyZ/K4HsR/JuRJjfsO+Ud/Duz488Rq/
lX/rgf0u7M/AF0eew2/DEyPPsXfgSZHn81vwhMjz6j14cuT5/BU8J/K8kq87
WL9dfibYh9TENpa/L+B+6mvO6/lir45dG8OzcG34E46ZkX2Irj8PXsbn3oen
RF4Xn8L3Rl4vK+FH4dcZ8wF8V+Q1tRyeFtk3vsSxP39vlG/hfKTeBeN/gJ+I
7GcG83dP7m0/eCjcu3iP3zFmfmTftRZeENmnPQz3iexzRjK+H+NryQcGr5eq
/PsmrYHIvutb+OHIvm4dvDCyD7wSbqIxXGOY3itcB9sajrmR/eHw4HVWD9v3
HIsi+73Ver+R1+zP8HOR1/jRvN/6ifedo+A6ifeOlnDDxPvjt/Ij8HytXfkL
+GH4O/kpeCG8Rv4LfkhrH24LT4M/gtvAU+FP4OPgGVr7HE15Dk/qWcmXYX8E
29fyX/A8+HP4JPg++DP4RPheeJ18IvwovAo+Ab4H/hQ+Hr4bXi1fDz8I9+Vo
xXc9je0Ljk7Y78d2Bkcz7E9p/nDU1R6B7TZ+++f6jZrz8CrdD3wonGvPg2+B
P9XvhW+C22B/Cx4Pf6FnJTu2Y3jOF8G/wosj+9tDGJNpj9R+oXegfYHvXQm3
gCfDK+Bj4Dvhgxmfat/F1gAOcE34A44j5cM153Vd7YPwcu1J2gvgGxn/MTwX
25fat+AHsJ/F0Zrf/gy2ioz5DPtObBv4uw/8BFwZ+xr4X3i9/C/8GHwxRyc+
+7zmNmOO436O196BvTP2xfA87O2xHwvvA6/nswm8H/wDnMNl4afgrXxuT/hJ
eAu8L7wBThlTHn4e3oa9Erwa3gVXgX+ES4ypAC+Gt8vvcjThHp7A3hGuDz8i
PxC8jxwrH4a9Efw49rl8dpaeueYm9oOwL4TXB/vwjow/Xz4Xfg77Buynwycp
9sR+PPys5qneE/wY/ADXPEi+A54D14Ubwav47LGMOZ6/uzO+IbwI+7FwbXiB
5jjcAH4UbgfXjD0P28O1Ys+rh7hmK67RBh4nX1D4yduxf5n4OlPgdYl/4yB4
LnwXPBC+T/MKng3X4DqH6R7gltgv0PfCzeDztY7hpvB5uge4OTxAaxpuDJ8L
3801ujC3r9Bvh0+LHBfdzZifEz+fGfCWxPNtMPyQfAJ8H/w3/AI8C074/Iu6
N849uc5V8P3YdzFmifZ9+JfE7+I4PQf4Qq17uHXitdYQrp04Nj5ScUvi+LkF
fETiePsIuGbiGPswuKRYHG6kd5c4Zj4c3g17Pbg1fBT2/nAruFHifOEEuB18
MdxBcx6+BO4Md4GvhLvA3RL/lk5w58TP6kS4Q+LcoSN8LHyp5hLcMXG+MAH+
OvEcnglvT7zulnLsy719xXlIyTHNDPgaeBE8XSx/pjyKefc/7Avlk7GPhVfC
c+Bh8NvymfCNXK955Oc5Avu72GfC18LH8G9vaL7BH8mvwpPhtYnn8Dj+vVnk
+XMD9hXyM/Ak+NvE6+IO+KvE6+sueGPidToR/ibxnL8X3pHYh4yBl8Oz4dHw
B/Lb8HWas5HfxTD48MjzcDR8VOR5O0prLvK8nQC3j/xs74FPjvxe7oDbRX5f
13P9D7n+LDH2xpHn+S/w85HziFGMeV/7ETwSfk/7kdYdY9pGngPDsb+j/Qie
Bm9KvL9Mhzcn3oOmwt8n3vv2gp+Bf2EdT+X8ouIE3tcoxaNFnFAde3nsSoIP
5MRHot04KiTOizfEXt/fw3diqJg4b/4+dv7xRRF/at1/qfgB3jfxNX5mTBV4
D3hb7LnzO3wvY5rz3dvhbtqjcsftit+bwdvgynBVxu8N74y9pjfBk/nsGYrx
sB2heFK+XDEqf1eG+Vj0E7xP8l8YGm2JnQ+NhI8L3sdqwX/HzsOugdsE5/jK
7+/kaMAHL8TeqVgLF8CzUq8zxaWN9azgveC/Yu/tena/wAdr3igWzp2PrlWc
z/gm/P0tfHLuOPA6+Cn5M477+dwhytEZXw77Lv6uAVfQawnWBhRrXRR872Uj
f/cB2Pfk/Afjm2o+wRUzxynHw1WC45cT4P2D89TXi5yip2LX2LGc8raPinhe
eduHinuDc9wP4JHBedv78IjgPPgNxcDB/ka5zxHwKu3PHBfH9m0DOP8WnEO/
qXg4OMY5D/svwX7xfPjX4NikKWP2Do5fzsX+c3AefAn2o4Nz3I8Viwbn7q8o
/g/WABTfXhycp36i+DY4j1RcdGVwzNgGrgTvB+8O/8p37A+XgXfE9mFb4enB
saRytP2CY0zlaBWD9YOX4EHBufKTWvvBeoNi+EuCtYSlxVo7Vblq7JxCusIL
2neCNYmXleME58HyA1cEx6HKMasGx6ed4GrBcWVn5SnwMq43NfYcVax6DufD
g2OofsW7eJrvG645xnw4V3sC3Bx7f/l+uBl8fmK9qIXySu0VcFM9Qz2/yHrW
7ZovkbWnKxPnNT0Zc0XiPOhUeCA8Bu4IX5VYozhNOUTuOETxiOK+AdgbYr8I
/l+x7vRZ5UenK4dNrH01gc/SflusNcX+yqPrwYMS39dJwbH8mXB9eDB8o9Ys
fD/nWyNrTEOw36J1h30AfDXcEj40d/6oPFI5Ry+4gfyDfDf8puap9lj4mOAc
4mz4sOB8pTd8MPwav28Kx6mR4wrds/IC5S7SBw4NjouV29YKjrX7M35r8B5+
LvYjg5+3nvv0yFqHnru0mqsZcwN8on4v9hmxc1X9Pv3O+yLrK8q/zgnel5WT
9gn+7fr3vsE6zVy4H3xJYv/Trnhf18Md4EsT+6728OXwiMJnXpZ4Lh0brG9d
VTwTzYFR8PHBc2M0fEJwLi5/q3/T/es3nYH94sTzqG2w9qnccwB8ATwIbgVf
CA+GWwfPOz2H8ZHvTTpA9+Le7oRPCf4efZ/+1n1KH+gRrEc+Al9QfK/eaddi
/khTOjNY91IefX6w1qX8+rzi+WhudAvWyZQvn6s4J7Em0LuYb9KgegVrbA/B
/YNzJmkOaXAudTbvazP8L/Y+8A/Bmt/RjCkbrH8ojysfnCsrxigTrB0qXioX
nKNshqcFa4GKH/YM1hSbFT5TsWcLuEJwTCrNOQuOVRXP5PC82NpLiXML5tZC
zsfk1h0Vz+zBmPeVE8Teg5WvH8F5t+C4VbFQCe4tLYIxTTi/p71ZPjxyzHtI
8dvlY6U5/xZ7X5OW+2/sPV367T+xY4+6cFzsp7Uj78va06Ut/6i8CP4Jnhq8
39WE/yz26Xpwxch7pTgJ9uc14N9jxyHSorUvK67RHn1A5P1T+6iupThBtq1F
rCIteju8Z+xY5Y/IcYV0782xc8qNkWMh5YVbIu8XB7HmU/59B+c4sx72mYIR
jq84rVJsw3EoY/7knGfWJL9SfioNCP6G8+2JdaQLuWbD3HrUVp7zHdgfixwD
HJVbY5HWcllmf1JBuVjmvVfa0dXS6/UMFA8n1vAHaq1lnod7KU/JrZVJMxud
2P9oXdycWO/SnG/O+MMZ/xfnv1Jrhh/Bm1NrRB8qf1UuxJhumXP6evBr2kP1
HXDXzBpADdVNNDcyP9cfOVfj2KXfkjn/rsuYVxnzBLwe+0S4UWb7H5wrcPyM
fT3nn6SLwB/A21JrpMv1jDN/1+/SI7mHAzTf4XbwgXBL+G24Ktwqszawgc9O
0nrMrQd+mTpnOh2uG5yHKWc8KFg7kVa2V7C+Ih1vd/gTaR6x83DpBy04r8S+
U/sXvBH+R3sW/L38Cd99qWIQxep830BpsNh/YkxL+CN4q+IQ+DP498Qa9Tfw
p1obsfUCaR7SbFcEazMNi7UsneNo7O8HayTSeN+Dz818P3vyvX9i7wZ/h70s
93CV3rXiGc5XxNaRb+EYHDtn2D31Pe9gTAX4GvhfeGls+yiOGPtZnH8K0X/B
eV89D/gzzi9wXKLvTn3tP7FXhIfE0X+JRWX4WjjAZaTJ6r0zZm/4angnXAke
qu9hzB5aA3rX2Munvsdd8OecX4qtX5TDPojzP8E5tDSEOvBfcHfsa7WPJ56H
c+BWPJfdsNfPrAEop6uBvWVu31kP+5vw7soVMufu7eVLgnP3dvIZwRrGsfC+
wXpn28jxp3xvzmfrZM7F+2I/JDhXkx+YAj8L/wjfFZzHS+NVvPFiYk1eOdQb
cCz/qzXFOYntg5YmXl/3Yf8D7ortW/hNOMDz4NcTOV5iAvgV+G/+nA1vg0/C
vhqeFLs+Wll+HPuJ8FfYX4V3Rq5xVIhd79Cz+zVxreTLYL2kq3xscC6pOuPG
2HpPh8j5iHQg1S4PCNaHpPMovlWOqfrjJr1D+E/4fuwvw3/Bs4K1ohPl0+Fl
8L/wg5onJT+7X3m2Q6U18e5f53nvX/K62g3+gOsuiP3+ymTOF+R79WzLYHsk
2PdrD9Df5TPntvI52h+192l+9Eq9px6Veg/MYudgyt2lpy0N1sykA38YrE80
h5fDX/CZWZFrmqtSx2mqk0oDkF73UrBGUrPwmdJpWhU+Yd/MeaX8p951WeyP
Bmst1bTGgnWC6vASuG7me9NerzmwL/xs8d7LwY/DWea8T/uRnvle2B/Dvlzn
2H7z39R5nPYyvYu9sS1izJ+pczHtC5qDmov6jj7YH+HcPPWa0dqRzhPkf4v9
sVaRHylPkrYt3f6DYO1HuujncF/VL+C2nM/M/AxVp1vJ+YnYe4/mqOaqatvS
zqXBvsNnT9H6jF2/k9Yufhf7Gs5fxJ7jih0UT9SPHPcrVlR9827db+w9+GSu
c1jsWmEn+BD5q9z7hPYL1S5fjX0dxSTSnKSBfxyskWv8G8HamDTYZcHaVRv4
E73f1DGk6uxnwU/F1nJXpEVOgP1jbE/H3g+2YH+62H+lmUkffj24ttCk8Pk/
ps5PtT+uTx0Pq74vrUta9MvBulQd+JVgPUx7t/ZfaWzSt7WP/5Y6b9XeKp+z
D/ZnguvAykeUl8gnlNf7KHz1TVo7ifdTPUfpwKo9SYN6J7Ne1aPwvaqfKh+U
/q998EbseygOSp0LqBajvWmc1mzifUn705jYe9BtnPdKvEdpr7o59t6hfy8l
9v+y7Zm4pqw46o3Me9BYreXEc+GVwt+pD0FahOod0pVPwbaO+zxHeh18cmqt
9JzYsb00RdXdtgRrg9JbVB9Rr8jXHMNj69CqOUoPOTG3xr8QnzQytVajGo36
RqRRqOYiHVq1v03BPRXa01U/kq7ZqfDP0vlUE1kTrAV20fcF6+K9YscY2gPv
4LiOY3vqGu4KrrMjdQ13ZeZ6q3K9p7VWgnPYA7AtTp0bPof9hdQ5/vNwuZLj
8t/g51Pnfc/CrxV56SuZ44TRWqeJn4P6ZRYXe4X2DM0V7bkVOT9Z+PBK8FPF
3lRZcz24ztBBaxXulzp+6Kb5ljqvf5nveiW1Fv2S/JLmHrw0czxwK+PLJo6Z
pXepVqJ4Yzy8d+JY4na4XBF76FmVTxx7z4xdZ9mYuh/gvcx1z2Xw+5nrBpqL
ik9eSq0/vIh9SeqcfTE8Xesyto+Q3qe8W/Wv/qljph6pY5jr4TxxjULzWLGK
+ou+5ZjAMS227iPNp3OhMT6p2Dx1rnGrYpjcNfcuuWtEqner7t21eG56fsty
52pdOXcv7kH30qbwsfK1XYp5rvl+kuoNnBfwzk/k/Cz2szl3zF2/mo/9u8R+
6YTiXtQPsDqyJineoD02sa9ul7om9p3mOff2VuL9pSX2+xP3bKh344XE+6xy
zcapc9KjtXaxz4UbwvWLHET16sa5+0A+1/NPvL835d8PTl2zVu26WbEfaV9q
VOzdvYox0mClxeo6DTg/WPKzlc4svVl1Nu0D6hF4NHE/g/oaVLt4FG6R+vko
9lctblFqbUc9WvvAp8C1g/dhxQqK/3QPehczsE9MHSuqV2RMan1AfSa3wa0i
90VorD6rGEPPXPVB5QX3M6Z75L61manjrlnFc9iDMQsZMzV1vKR+lSqxc//9
Y/sivVPlAnrmiokWBD9zaQV3w0/C50fuPeuQutapmqdqs8rv3lK8mlqnVW+b
6n6zI/cgzE8d36onrUpqLb1R8D45udhz5Tekw6sfTPNKOVQZzm+k1n7U8/Ni
at1J/XWq/SonfZPr3Jxa91DPjOaScrrF2Oekzt3mFnNPOuTbwbVN/e7n4E6p
67Cqx0r//4ajktYV549iv8uqmesOyk8nFnuE0hqtHeUx24N9vHzcktg1A63R
OZl978uF/9WaUq62oVjXsuvfG2b2hcpttdb1b8pdNN8Va+5WzJf3ijmzuPCl
F3Ecn3nvVq/OsOJ68vNtMsd+fxd6wOJi/JKCR3AMyOxXpQPM1rOJre93LfyD
1my3okazSXlq5v1FOsPZmeMW9RodkjlGVq7dXzl27N6kLoUv0nqsnVlXlzYi
X6R72hb8vPXcFTfdFVtLlY6q9f1u/P/1Ep2/zOzDlEOO5DimmMfSJfSbVhW/
awjXbxC5n2oRf6+IPUeVy+lZts69XhXXKqZ9N/d77JFbI5BWoF6L+cXzlw4m
XUMxZofc/lB5dxXOV6TWkNQzI9+peFTjpC/o2u0ZMzh1fKm+r+Gp9TT1fSm+
UzynWE6+SjmJnrXW5YfF2lR+qHeu/OXd1BqnepBeLZ6b1lDTzLG2NCXFsopj
NE+/K5j//juvKXh9MccmFPNsdTFvlhRzWM+ye+65qjV4XurYWj1U2g/fjO1P
exTPTc9hbXE/Wjvriuso5rkotbamHifpJtJP9ku9lsfCLxRxiGol6hscnVlP
UC/KH6nrI+o57JBZS1Fvhnq3NMdVNx+TWQdQz8zvqesy6oG8PrOeoB6YEZlz
f/W0XJNZKzgg936pvUq+/p/UdTH1Ug7LrMNUV40usx5SDR6SWYs4UHXYzFpE
DfiGzHqF6vu7Z66jqReiSua89Sf5Qw49fOWk1TPnqqrJHpg5j1aPyt6ZNd61
mWtsWovqXayZOcdXrFUrc/6+rVhTyrXUl6I+Pe2nqsvrmqrVql6v/VV27ZXa
g1SnUF1/fPCaUj/e/plz6s2a+5l1APXJqP6quf995l4nrU+9O/lw1Z7Ux9Y3
cVyiWFF9UNJSlF/3zqw5qA9HGqD8qXp1mmTOHdQvJN8tH95afj1zrXAf7Bdl
1o7KqS6cOQ5UP0DjzPGh+gqOyhw3qgfgwsz60t65dULFlqrpq49I2nt5rdPM
NcdK8OWZa4sV4Ssz1x8r565xqtZ5WOreHulv6k3qk1kfUy/QrtR1T/W3KNZS
zfaf3LVd+VD1+aSZr6M+ZPXbKv5TD95hmfN01fSlT0pbUP/DwZn3aNX0pSVp
/1W/hGpniqfuVF9J5lxb/QnSWv/LDTk/HwptM3VvknQb9TX1zKzVqCfq8My5
vPoKjsyc76sPoVxm7Xqd/GJm/XMN5+259V/laNty68LKlX7LXbdTbP9r7jqN
Yu+fc9fVFG/vyK1f/xcn554fqj/+krvGo/j8j9x6tHKQn3LXI5VT/Ji7Bqlc
44fctUDlFJty1wKVm2zJXZOT39iau36peHv3kuNC9amWKVk71nyuUbL+pfde
t+QajNZynZJ1WK3lg0rWZ+UT0sR7y38xecl9w1q/9VQ8SO0T6pesb2rtJ4n3
HOUjtUrWEzWHq5es1WqOVStZU9M83Jy7Fqu8oGrJmprmec2SdVjNwwNK1nzL
av6UrKlpbv+euwagvOPP3P0cyt12Kzke1R79ReH3FaOov0var/ruWmfWheYV
/lB5q/qgpIErHr+5ZB1csZN6DhXPac+U3qJ5oh4P9fbMDNYeFVfvlbku853m
dWat8tvMerv2XfWPKddQj0auHqjMev5qzvcE73WqH8lnqp7ytdZB5vr+1MLf
KodVX5b8g7QC9XGVSu4tll/KSu6B1hxOS+5vlv9MSu571r3FJfcr6/qh5L5n
3acKQupp1pz/K3df+Mfyzbn7rXWfilEUqyj/kd6rHOW6kmMGaQC14YGZ9QHV
WXbm7tv+VH40dx/5J/Cu3LmNYhjFndrbpYmpnqhctXNwH69qzeqD/Tt1z7bu
5+HgGEAa4+TUdWr1oD6SumaqvtaHUtf01de6MHWNW32z44u8Q/2xO1P3fut+
xqbuK1D/p/Y+9ZDrnu9MXU9XD6367vpF7mWdH6zdKf9SX6LqF5qf6k1SvKZe
XPVoqT9B/aWzijhfvaAzUvcnqM92Xuo+BPX3Tk9dT1fP7dzUvQfq79X/86La
unpu/w+Kk3dM
"]], Polygon3DBox[CompressedData["
1:eJwtm2WgHMUShXfHLu6uAZLgbsECBAsQAgSCu7u7u7tLgBAkuLt7cHsEd33I
I7jL+76c+dH39pnqmZ2d7a6uOqdmlq12H7Jb0el0vig7nYr/a9adzvzdTmdF
wLU9nc6GTaczE8d/5tii4E3BvcH/gpcA/8S4B8Dncf5v2CakbYjtCy46Pfaf
sT+I/Xzsv2PbibYceErsK2OfkOMnMX4/2qSMHQf72vQ/xj4d9vs5tjvjt2bc
/7CNx//jsO9FmwjbBOAT6O9DmwT8Ie0axp/I8Z8ZvzmtL7jkektxvc3AfcBd
8JLgTcCzgf/m/H7gjfn+S9H/mvOnBW8EXhL8FXgacB+ufwn4Oc45hGvsAZ6V
/tzYX+BaxzB+O+zjcHw+xt/D/12wb4H9K+ybcM4l3h9tf45tyfgBjF+Fcdcx
fjzGrAceStsK2ya0pel/U+Z5jMv/Y8F70ibknNlpl9J/nusdyrUnwn4yeH/a
ZNgmBp9C/wDa5OB7absydkuOf81nTcL/U7EdSJsC23203bBvxfFvsI/D/2Ow
7UGbANv44OPp702bGDwXYy6gvynH/0v/KO53G3CDbR6fH8dm5nq/cmwx8IXY
VwCvSDuLMTtgX4L+pNz7iti3B/cDTwJeAbwFY17n3PVpa9CfAftu9H/F3gf7
TRzbkvEb8fmfYTuY62+K3ck8O/aDfIbgf7H3BR8C3gzcxT4H+E6uM4XjaU8y
5gGO7wHchv63XG9ixr8Fvh5cM35L7G8wdifamvRPxT4n9rn8PcEb0Z7H9gN4
IfqnYJ+d/hy0/cATgt+gfy3XK7neoeDNGV9gm9P5x/0Mw36C4xmzBfcwN/2a
40tjn4jxb4Kvc72CH+a8vcHbgb9j7Ja0ecAN45fBvhX2N7n+zrS16R/N+dvS
76E/L/Yb+b8F4zfk/E99trSB4Bk4fzXvB/uLjB+Xdj9jduP8Nen/Rr8X9oew
78X4bcFjOHd37Gth/x08C/bzwMtg70872WdbZ33/gX1W7EeCtwbX2Ob29+D/
jozdDPuXXG9c2rrY16Ftztj9aBvQ/wt7b8af63pl/NK0kzh3/zr+5+8y8+M2
jm2HbRPw51zrevBm4PXBH4NvAG8O3gD8CfgSzl8VvBrtAmwVx1bjeu/yPKbm
eruCV8E2PXhV8B38n9z5xbEnuMYu2AfQn5rjA7FvzjVGY1+Btir9nbEvj30q
7Ktg3xG8JHgy8ErgI/j8rRhbubbAo8CXYR9Oe5Nj6zN+OvpjGLOwvw+4F/h3
8OLglRhzh/6b9oafgX0B+s/QPxv7xE3Wx1fgGcBTNFmv3xX5PVfg/Nvb+32d
Yz18p6O6WXPjY+uvT6B/PbaDGf8UuAd8Hfgg8FKMuQk8A+1eju3K/Q92vXKd
mbFP1cQ//lDk97+V/xOD/+Q7PMqYN4vc+53uAeD+XO+WbvakUdie5vzp22uf
4H7E/0v97WkHMH7KJvP7+yLzb2rwDuDt3TO4l33q+NfVue712B8D7++5/n4c
m6bJ2t6Rti+2hd1PuvmO13LN5cC3dvNMn/a3bzJ/xxT5fpM2Wc/fgGcCN9zT
keBdaeNx7pPYm/ZaB2JfgmM3dvOd7uHY5/wvnT/OCTqPcw+n0j+N9iRjX6Vd
RP9IbD9xravBG4LXAX8AXtzvxTV+5tglXK/m+BHgXVzD2BZzn6H/E/Zh2Pfj
nDPor01/Xf0l+FzwUPAGrh/+T+J649hjXGt/7GfSH8Lxodhvcc9xPXPsEfc4
7veX9rPHxX4A48/y/sDrgZ/Afjb4HNrz3MuixhndzCnn0GRN5v+W3jNjD2wy
dl1s63P+JE3899fgGcEDmsy1+8AnghfkeleDP/KZcezLOs/C7zoO9s+dn9q4
11/87erMtzFl4pX1ODYt9v9xbCHwUPA04K/BC7pe6/iDn8r8vnWT+b0GbUNs
Q2mL0v+8jL+Yl88bAX6BaxzOPTRN/OeHReKJnib+8qMi8Ybr1Ll1G20019ie
6w10vZRZrxswfkau9SPHFgG/jf1D8Cmc9ze2k8CzdBKTGJucAJ5ef07bCfxO
nWdzKuP/8VnT5gX3gPtzvXWbzL0vnePgdcBTGR+6BsHHc/6UnRzb2j2ednkb
fxzGNb7A/iP9i/yuPYm7jL8mo/Uqcw/eS1/6z3PtR2mng9di3DqMn9n5zfWu
5Njm+i/3T/D7rm3sM2K/EHyFe4SfB76Z/unYf9U3NFlrvxTZHxbAflU3z8jv
PH2VeGUH8MLgR5qsrTXpD/H783mLYP+M600F3sH9APxjmfl2B/hQxg8oEu/c
Dj4EvLz3Ar6qzv7ltd8Dz8LnXcz5d3NsV47NBh7mWgcbeE8DPg+8Lrg3+Mo6
97YQ/Xe9vmsC+z8ce5x7eKzJd/fZbMH9LMf4XtjfxDa58UGTeGdj2nbYVqb1
pf8e9il6Evca/05Km5ljGxbxJ8fR9gFPwPjX6V9Dv2D8Dcb7nP8o404HX2+8
DH4EfBr4OvCs4IfBp4Kv9TuDHwKfAv6b6/Xp5h68lwv5vqu7v3L9t5rsse61
q+r7wR8yZnQn9+C9XMKxCTj3Jq53GNc7A/wwtn3Bu4NPBz/kvYN3Mx4Ez2ks
Bz4T/CfXmLmbZ+SzusZ8hv4D2E/GPtL1ZGwDPsl4CDwH+AnwGeCbwXOBnwKf
1WNgRZwCnoc2iOudw/2vzOGVuf83sF0EHgReHfw2uOv6Yux8+gjG/0obv5vv
NA/932iTdvMbL0R/mDkO/Rv5vEP5vFma5DZ/FYkPZ2HM/7j+vVx/UuNp7B87
/7HvD/4F+xjwd84n+rPSvqV/H+Mnw94L/A34HvAk4JnAX4HvAk/k+gN/Db4b
PHFPYlpj2wXALzbx1+6FrvFFXEsce9v9172k/fzKPYw2G/3zsP8H+zHY9+nJ
/uT+4Hd8oIzf1n/f7H5a5vn4W/mbzU3/J1pBf2SR7/sjuAu+usj9/wA2dr+q
yP3+XOezrynyfb+rs3b+ps1I//s6sdqVRb7v+dzfa+BjwfuCL2+y37nvHQUe
3iQ+MU45EnxUE9+0BXhL8Knge/W14F3AT3P9y8EjaG/xXfs0ya3c1M2HTmmy
9ndn/M7g08D3gfc0VgLPAT6E8QfTjuVaL9Pu7yTHNtc+wZiV/vaM357xL2K/
HXwH7RvsszXJ/f4pEj/ezf+punmGo7iHlxh/p7+3exzjD2+Sb5h3bMr4w8AX
gzcCb+L8aJJr/l4kfzqiSf5qHruZ8XuT+Ms4bHPwseBrwduAtwHP2iS335d2
OJ99F8en7OY3fMpc0pic8dtxfDvGnwy+DbwLeCfw7E2eRVEmn36Oa9zYyR7u
Xt4X+0Fer0w+c1WT6/s5x4GPMUZi7FbgrZ3/TXLXP4vkf1c2yf/MA48FX9Ek
njeuPwY8osna1A8fDb6sSbxj3HME+FLwhM5f8OHgo90D+LwtwVu5n3O/Izvh
JOQmjNunixvpTCUngn1qjk1D60f/D9q0jqEtQf8kBt7K2J253o5c70TwLe7l
4B3AvZvk9v8WyZ/KJvvVO0X2r6+5xieM/5Q2jWupSTyxCm0dfUmd2G0448d3
/TfhVv4okj8b54+NzbrJ/65uMp+cV8f3JC4zPjvCOY190SbxwPAy8cW/LX/x
apH9+yzjI8Yupk/geWxAe9b9HTxfFU5AbmBFzh/tb087D7we52/Yk7hk6iyn
zuT8eYTx+7ge6H/fJC41PnWP3pVjh2FfgP6izn3sh4MX9PPBL5uL0BYBT8h5
A7j+NuCFwOMb6xsPMv7pbvieuegfgv18+utj3wj7oe5h4A3AG4P7NYk3bioT
b24LXti9DPvyPYlzjHcO9jctE3cYfxzkbwp+lM/Yl/4O9H/g3DFVYoe+/L/S
fIX/+4F3xP5jk3nn/PudYw9z7En32E72dHOF0+XzOnkGPgvngHPhVsaO15N1
7no/3j3VGKcJ17M77cA6vJj82MT6T2MIjn1A/0b6PZx/HOOvA2/LdbbtyXPx
+RxN26vMc/H5HEPbu8zv6O95lD4PPIR7eqibHKUCL9Ekfr+5TP6wFvb79R3u
KcbofP4X+jv6E/ZkDjmXlgS/0iTPMN84zPhKDo/xn9G/rcz8Ppbxi4OXAr/a
JM8x3zlSHy4Xhn1Z+svRfw37dE1yp5+N3XrCYchlLIv9P9q5/ufg242dsG/N
sfnA4zB+2Z7kVeZXxoi7lImjjZ05PDa/G1MntxpR5Pu4X33ZyZ7s3nwR1/sv
/XOwH4D9Lz7/CfAlnPsXtnEY8yr4KnC3J7xsb/Aknl8m/pBfXJ42uE4MYiwy
wLyW8Rc34XZu4PqH9CTPMd/B3JmiTB5kPuQ2O6VrrJv4fRza1GUc2XIcW5a2
unttHf70lSLxZuMexrArGPtvk8/x865v93/jQ/nVJWgr+VvR3mH8uz6fOryz
/PN4tGkZ/2c3uc1EtBnK8B69XF+06cvwjPKN49OmA1/DF9mY/lD6HxmLcM1H
wY/R/sD2V5uvPV8kfv6zjf8X9jvJvTBmCGMHc/47TXyyvnkZjo90PP8fxz7M
e2viv32+xnxL0r9KH4d9CPb3sfdw7BXwlT47zv+2DvdxeZH5M2eTfGDNMvmD
ca+x4m+MeYhjZ3O9leivRP/1Jnmg+eC4+vcycaOxlTHWg+3+YqxqzLq4uTfn
PKX/Ydxe+mPwk/of8J7gM8GPgPcD79GT+NTY3Rh+Qfpv0EZhf7qTSfEm7Rm6
z9K69M/l/BfdDzh/b85/l2MvdTIHnAs+c5/9xdzbH4yt6sSvl7u3GI/LoYLX
BX/o3O9mLk7T+vvdObYG/V5cf/WebATGV3LY8tvGCcYLp9OmrBK3GL/Imctf
GycYL5zWDd8tjyy3JcclP2PeaP4oZyNf8lsRX3h0N/yX+6z7rZy6/Lr7pPul