forked from theodoriss/gcn-demo
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
97 lines (51 loc) · 2.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import torch
from sklearn.metrics import classification_report
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import networkx as nx
import utils
# In[ ]:
graph=utils.create_Graphs_with_attributes('karate.edgelist.txt','karate.attributes.csv')
A = np.array(nx.to_numpy_matrix(graph)) # adjadjency matrix
# In[ ]:
class Trainer():
def __init__(self,model,optimizer,loss_function,epochs):
self.model=model
self.optimizer=optimizer
self.loss_function=loss_function
self.epochs=epochs
def train(self,X_train,Y_train):
y_train=torch.from_numpy(Y_train.astype(int)).type(torch.LongTensor)
tot_loss=0.0
all_preds=[]
for t in range(self.epochs):
epoch_loss = 0.0
#model.train()
y_pred=self.model(A,utils.create_features(graph))
all_preds.append(y_pred)
loss = self.loss_function(y_pred[X_train],y_train)
self.optimizer.zero_grad()
epoch_loss+=loss
tot_loss+=loss
loss.backward()
self.optimizer.step()
print(str(t),'epoch_loss:'+str(epoch_loss),'total loss:'+str(tot_loss))
self.all_preds=all_preds
def test(self,X_test,Y_test):
self.model.eval()
y_test=torch.from_numpy(Y_test.astype(int)).type(torch.LongTensor)
y_pred=self.all_preds[-1] # preds of last epoch
loss_test = self.loss_function(y_pred[X_test],y_test)
print('validation loss is equal to: '+str(loss_test))
def visualize_classification(self,graph,Y_test,classification):
last_epoch = self.all_preds[self.epochs-1].detach().numpy() # get outputs of last epoch
predicted_class = np.argmax(last_epoch, axis=-1) # take the unit with the higher probability
color = np.where(predicted_class==0, 'c', 'r')
pos = nx.kamada_kawai_layout(graph)
nx.draw_networkx(graph, pos, node_color=color, with_labels=True, node_size=300)
if classification==True:
print(classification_report(predicted_class[1:-1],Y_test))