Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

多分类时参数α的意义是什么? #13

Open
ChuanTianML opened this issue Dec 28, 2019 · 0 comments
Open

多分类时参数α的意义是什么? #13

ChuanTianML opened this issue Dec 28, 2019 · 0 comments

Comments

@ChuanTianML
Copy link

原论文中,α的作用是增大数量少的类别的权重,即对正样本权重为α=0.25,对负样本权重为1-α=0.75,这样增大对正样本的学习能力。
在这里,模型输出经过sigmoid,然后沿用论文中focal_loss的计算方式,使我不太清楚这里α的意义。
因为,这里的α对于多个类别,是一致无差的,也就不能起到区别对待各个类别的作用。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant