forked from dahjan/DMS_opt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRF.py
executable file
·58 lines (45 loc) · 1.63 KB
/
RF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Import libraries
from sklearn.ensemble import RandomForestClassifier
# Import custom functions
from utils import prepare_data, plot_ROC_curve, \
plot_PR_curve, calc_stat
def RF_classification(dataset, filename):
"""
Classification of data with random forests,
followed by plotting of ROC and PR curves.
Parameters
---
dataset: the input dataset, containing training and
test split data, and the corresponding labels
for binding- and non-binding sequences.
filename: an identifier to distinguish different
plots from each other.
Returns
---
stats: array containing classification accuracy, precision
and recall
"""
# Import and one hot encode training/test set
X_train, X_test, y_train, y_test = prepare_data(dataset)
# Fitting classifier to the training set
RF_classifier = RandomForestClassifier(n_estimators=150)
RF_classifier.fit(X_train, y_train)
# Predicting the test set results
y_pred = RF_classifier.predict(X_test)
y_score = RF_classifier.predict_proba(X_test)
# ROC curve
title = 'Random Forest ROC curve (Train={})'.format(filename)
plot_ROC_curve(
y_test, y_score[:, 1], plot_title=title,
plot_dir='figures/RF_ROC_Test_{}.png'.format(filename)
)
# Precision-recall curve
title = 'Random Forest Precision-Recall curve (Train={})'.format(filename)
plot_PR_curve(
y_test, y_score[:, 1], plot_title=title,
plot_dir='figures/RF_P-R_Test_{}.png'.format(filename)
)
# Calculate statistics
stats = calc_stat(y_test, y_pred)
# Return statistics
return stats