Skip to content

Latest commit

 

History

History
119 lines (85 loc) · 2.61 KB

ssl.md

File metadata and controls

119 lines (85 loc) · 2.61 KB

self-supervised learning tutorial

Data Preparation

To download the dataset, please refer to prepare_data.md.

Self-supervised learning support imagenet(raw and tfrecord) format data.

Imagenet format

You can download Imagenet data or use your own unlabeld image data. You should provide a directory which contains images for self-supervised training and a filelist which contains image path to the root directory. For example, the image directory is as follows

images/
├── 0001.jpg
├── 0002.jpg
├── 0003.jpg
|...
└── 9999.jpg

the content of filelist is

0001.jpg
0002.jpg
0003.jpg
...
9999.jpg

Local & PAI-DSW

We use configs/selfsup/mocov2/mocov2_rn50_8xb32_200e_jpg.py as an example config in which two config variable should be modified

data_train_list = 'filelist.txt'
data_train_root = 'images'

Training

Single gpu:

python tools/train.py \
		${CONFIG_PATH} \
		--work_dir ${WORK_DIR}

Multi gpus:

bash tools/dist_train.sh \
		${NUM_GPUS} \
		${CONFIG_PATH} \
		--work_dir ${WORK_DIR}
Arguments
  • NUM_GPUS: number of gpus

  • CONFIG_PATH: the config file path of a selfsup method

  • WORK_DIR: your path to save models and logs

Examples:

Edit data_rootpath in the ${CONFIG_PATH} to your own data path.

GPUS=8
bash tools/dist_train.sh configs/selfsup/mocov2/mocov2_rn50_8xb32_200e_jpg.py $GPUS

Export model

python tools/export.py \
		${CONFIG_PATH} \
		${CHECKPOINT} \
		${EXPORT_PATH}
Arguments
  • CONFIG_PATH: the config file path of a selfsup method
  • CHECKPOINT:your checkpoint file of a selfsup method named as epoch_*.pth
  • EXPORT_PATH: your path to save export model

Examples:

python tools/export.py configs/selfsup/mocov2/mocov2_rn50_8xb32_200e_jpg.py \
    work_dirs/selfsup/mocov2/epoch_200.pth \
    work_dirs/selfsup/mocov2/epoch_200_export.pth

Feature extract

Download test_image

import cv2
from easycv.predictors.feature_extractor import TorchFeatureExtractor

output_ckpt = 'work_dirs/selfsup/mocov2/epoch_200_export.pth'
fe = TorchFeatureExtractor(output_ckpt)

img = cv2.imread('248347732153_1040.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
feature = fe.predict([img])
print(feature[0]['feature'].shape)