forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lsj_coco_detection.py
117 lines (111 loc) · 4.02 KB
/
lsj_coco_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
# dataset settings
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
image_size = (1024, 1024)
train_pipeline = [
# large scale jittering
dict(
type='MMResize',
img_scale=image_size,
ratio_range=(0.1, 2.0),
multiscale_mode='range',
keep_ratio=True),
dict(
type='MMRandomCrop',
crop_type='absolute_range',
crop_size=image_size,
recompute_bbox=False,
allow_negative_crop=True),
dict(type='MMFilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='MMPad', size=image_size),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg'))
]
test_pipeline = [
dict(
type='MMMultiScaleFlipAug',
img_scale=image_size,
flip=False,
transforms=[
dict(type='MMResize', keep_ratio=True),
dict(type='MMRandomFlip'),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='MMPad', size_divisor=1024),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'ori_img_shape', 'img_shape', 'pad_shape',
'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg'))
])
]
train_dataset = dict(
type='DetDataset',
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
test_mode=False,
filter_empty_gt=True,
iscrowd=False),
pipeline=train_pipeline)
val_dataset = dict(
type='DetDataset',
imgs_per_gpu=1,
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
test_mode=True,
filter_empty_gt=False,
iscrowd=True),
pipeline=test_pipeline)
data = dict(
imgs_per_gpu=4, workers_per_gpu=2, train=train_dataset, val=val_dataset
) # 64(total batch size) = 4 (batch size/per gpu) x 8 (gpu num) x 2(node)
# evaluation
eval_config = dict(initial=False, interval=1, gpu_collect=False)
eval_pipelines = [
dict(
mode='test',
# dist_eval=True,
evaluators=[
dict(type='CocoDetectionEvaluator', classes=CLASSES),
],
)
]