forked from neuroethology/BKinD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_simplehuman36m.py
378 lines (291 loc) · 14.5 KB
/
test_simplehuman36m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
import random
import time
import warnings
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.models as models
from dataloader import simple_human36m_dataset as h36m
from evaluation import human36m_skeleton
from evaluation.evaluate_simplehuman36m import compute_mean_distance, \
mean_per_activity, format_results_per_activity, \
format_results_per_activity2, y_human36m_path_to_activity
from model.unsupervised_model import Model as orgModel
from model.kpt_detector import Model
from regressor.regression import linearRegressor
import numpy as np
import math
from utils.model_utils import *
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Regression with Supervision')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--nkpts', default=10, type=int, metavar='N')
parser.add_argument('--schedule', default=30, type=int, metavar='N')
best_acc1 = 100000 # error
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
model = Model(args.nkpts)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
# model = torch.nn.DataParallel(model).cuda()
# optionally resume from a checkpoint
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
title = 'Landmark-discovery'
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = 0
org_model = orgModel(args.nkpts)
org_model.load_state_dict(checkpoint['state_dict'])
org_model_dict = org_model.state_dict()
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in org_model_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = h36m.SimpleH36MRegressionDataset(args.data, transforms.Compose([
transforms.Resize(128),
transforms.CenterCrop(128),
transforms.ToTensor(),
normalize,]), image_size=[128, 128], loader = h36m.default_loader)
val_dataset = h36m.SimpleH36MRegressionDataset(args.data, transforms.Compose([
transforms.Resize(128),
transforms.CenterCrop(128),
transforms.ToTensor(),
normalize,]), image_size=[128, 128], loader = h36m.default_loader, evaluation=True)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
linear_regressor(train_loader, val_loader, model, 0, args)
return
def normalize_points(points):
return (points + 1) / 2.0
def linear_regressor(train_loader, val_loader, model, epoch, args):
debug = True
# switch to train mode
model.eval()
distances = []
distances_min = []
correct_flips = []
paths = []
num_test = 1000000
num_save = 60
target_correspondeces = human36m_skeleton.get_simple_lr_correspondences()
correspondeces = human36m_skeleton.get_simple_lr_correspondences()
n_batches = int(math.ceil(float(len(val_loader)) / args.batch_size)) # batch size was 64
save_frq = int(math.ceil(float(min(n_batches, num_test)) / num_save))
avg_time = []
path_fn = y_human36m_path_to_activity
used_points = None
offline_prediction = None
with torch.no_grad():
for i, (images, target) in enumerate(train_loader):
if args.gpu is not None:
inputs, kpts = images[0].cuda(args.gpu, non_blocking=True), images[1].cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
im_path = images[2]
# compute output
output = model(inputs)
pred_kpts = torch.stack((output[0][0], output[0][1]), dim=2)
pred_kpts = pred_kpts.data.cpu().numpy()
if i == 0:
preds = pred_kpts
gts = kpts.float().data.cpu().numpy()
else:
preds = np.concatenate((preds, pred_kpts), axis=0)
gts = np.concatenate((gts, kpts.float().data.cpu().numpy()), axis=0)
print("Training data done")
iter_start_time = time.time()
with torch.no_grad():
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
inputs, kpts = images[0].cuda(args.gpu, non_blocking=True), images[1].cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
im_path = images[2]
box = images[3]
details = images[4]
# compute output
output = model(inputs) #, inputs)
pred_kpts = torch.stack((output[0][0], output[0][1]), dim=2)
pred_kpts = pred_kpts.data.cpu().numpy()
if i == 0:
test_pred = pred_kpts
test_gts = kpts.float().data.cpu().numpy()
else:
test_pred = np.concatenate((test_pred, pred_kpts), axis=0)
test_gts = np.concatenate((test_gts, kpts.float().data.cpu().numpy()), axis=0)
paths.extend(im_path)
print("Test data done")
regressed = linearRegressor(preds, gts[:,:,:2], test_pred, n_kpts=args.nkpts, reg_pts=kpts.shape[1])
regressed = torch.from_numpy(regressed)
test_gts = torch.from_numpy(test_gts)
regressed = normalize_points(regressed)
test_gts = normalize_points(test_gts)
dist, dist_min, correct_flip = compute_mean_distance(
regressed, test_gts, correspondeces=correspondeces,
target_correspondeces=target_correspondeces,
used_points=used_points, offline_prediction=offline_prediction)
distances = dist.cpu().numpy()
distances_min = dist_min.cpu().numpy()
correct_flips = correct_flip.cpu().numpy()
mean_distances = mean_per_activity(distances, paths, path_fn)
mean_distance = np.mean(list(mean_distances.values()))
mean_min_distances = mean_per_activity(distances_min, paths, path_fn)
mean_min_distance = np.mean(list(mean_min_distances.values()))
mean_correct_flips = mean_per_activity(correct_flips, paths, path_fn)
mean_correct_flip = np.mean(list(mean_correct_flips.values()))
results_str = 'mean distance %.4f\n' % mean_distance
results_str += 'mean min distance %.4f\n' % mean_min_distance
results_str += 'mean correct flips %.4f\n' % mean_correct_flip
results_str += '%s\n' % format_results_per_activity(mean_distances)
results_str += '%s\n' % format_results_per_activity(mean_min_distances)
results_str += '%s\n' % format_results_per_activity(mean_min_distances)
results_str += '%s\n' % format_results_per_activity(mean_correct_flips)
print(results_str)
results_str = format_results_per_activity2(mean_distances)
print(results_str[0])
print(results_str[1])
results_str = format_results_per_activity2(mean_min_distances)
print(results_str[0])
print(results_str[1])
return
if __name__ == '__main__':
main()