-
Notifications
You must be signed in to change notification settings - Fork 84
/
icing_rewriterProofsScript.sml
467 lines (452 loc) · 17.7 KB
/
icing_rewriterProofsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
(*
Correctness proofs for the expression rewriting function
Shows that matchesExpr e p = SOME s ==> appExpr p s = SOME e
*)
open icing_rewriterTheory source_to_source2Theory fpOptTheory fpOptPropsTheory
fpSemPropsTheory semanticPrimitivesTheory evaluateTheory
semanticsTheory semanticsPropsTheory floatToRealTheory
evaluatePropsTheory fpSemPropsTheory;
open preamble;
val _ = new_theory "icing_rewriterProofs";
Theorem isFpArithExp_matched_evaluates:
(∀ e env.
isFpArithExp e ∧
(∀ x. x IN FV (e) ⇒ ∃ r fp. nsLookup env.v x = SOME (FP_WordTree fp)) ⇒
∀ (st:'a semanticPrimitives$state). ∃ st2 r fp. evaluate st env [e] = (st2, Rval [r]) ∧
r = (FP_WordTree fp)) ∧
(∀ exps subst env.
isFpArithExpList exps ∧
(∀ x. x IN FV_list exps ⇒ ∃ r fp. nsLookup env.v x = SOME (FP_WordTree fp)) ⇒
∀ e. MEM e exps ⇒
∀ (st:'a semanticPrimitives$state).
∃ st2 r fp. evaluate st env [e] = (st2, Rval [r]) ∧
r = FP_WordTree fp)
Proof
ho_match_mp_tac isFpArithExp_ind
\\ rpt strip_tac \\ fs[isFpArithExp_def]
>- fs[evaluate_def]
>- (fs[evaluate_def, fp_translate_def, astTheory.getOpClass_def,
astTheory.isFpBool_def, semanticPrimitivesTheory.do_app_def])
>- (
Cases_on ‘exps’ \\ fs[] \\ rveq
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[])
\\ disch_then $ qspec_then ‘st’ strip_assume_tac \\ fs[do_app_def]
\\ COND_CASES_TAC \\ fs[fp_translate_def]
\\ TOP_CASE_TAC \\ fs[fp_translate_def, do_fprw_def, CaseEq"option"]
\\ rveq \\ fs[fp_translate_def])
>- (
fs [quantHeuristicsTheory.LENGTH_TO_EXISTS_CONS] \\ rveq
\\ rename1 ‘isFpArithExpList [e1;e2]’
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[] \\ metis_tac[])
\\ disch_then (fn th => qspec_then ‘e1’ strip_assume_tac th
\\ qspec_then ‘e2’ strip_assume_tac th)
\\ fs[]
\\ simp[Once evaluate_cons]
\\ pop_assum $ qspec_then ‘st’ strip_assume_tac \\ fs[]
\\ first_x_assum $ qspec_then ‘st2’ strip_assume_tac \\ fs[]
\\ fs[do_app_def]
\\ COND_CASES_TAC \\ fs[fp_translate_def]
\\ TOP_CASE_TAC \\ fs[fp_translate_def, do_fprw_def, CaseEq"option"]
\\ rveq \\ fs[fp_translate_def])
>- (
fs [quantHeuristicsTheory.LENGTH_TO_EXISTS_CONS] \\ rveq
\\ rename1 ‘isFpArithExpList [e1;e2;e3]’
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[] \\ metis_tac[])
\\ disch_then (fn th => qspec_then ‘e1’ strip_assume_tac th
\\ qspec_then ‘e2’ strip_assume_tac th
\\ qspec_then ‘e3’ strip_assume_tac th)
\\ fs[]
\\ simp[Once evaluate_cons]
\\ pop_assum $ qspec_then ‘st’ strip_assume_tac \\ fs[]
\\ simp[Once evaluate_cons]
\\ first_x_assum $ qspec_then ‘st2’ strip_assume_tac \\ fs[]
\\ first_x_assum $ qspec_then ‘st2'’ strip_assume_tac \\ fs[]
\\ fs[do_app_def]
\\ COND_CASES_TAC \\ fs[fp_translate_def]
\\ TOP_CASE_TAC \\ fs[fp_translate_def, do_fprw_def, CaseEq"option"]
\\ rveq \\ fs[fp_translate_def])
QED
Theorem isFpArithExp_matched_evaluates_real:
(∀ e env.
isFpArithExp e ∧
(∀ x. x IN FV (e) ⇒ ∃ r. nsLookup env.v x = SOME (Real r)) ⇒
∀ (st:'a semanticPrimitives$state).
st.fp_state.real_sem ⇒
∃ choices r rn.
evaluate st env [realify e] =
(st with fp_state := st.fp_state with choices := choices, Rval [r]) ∧
r = Real rn) ∧
(∀ exps subst env.
isFpArithExpList exps ∧
(∀ x. x IN FV_list exps ⇒ ∃ r. nsLookup env.v x = SOME (Real r)) ⇒
∀ e. MEM e exps ⇒
∀ (st:'a semanticPrimitives$state).
st.fp_state.real_sem ⇒
∃ choices r rn.
evaluate st env [realify e] =
(st with fp_state := st.fp_state with choices := choices, Rval [r]) ∧
r = Real rn)
Proof
ho_match_mp_tac isFpArithExp_ind
\\ rpt strip_tac \\ fs[isFpArithExp_def, realify_def]
>- fs[evaluate_def, fpState_component_equality, semanticPrimitivesTheory.state_component_equality]
>- (fs[evaluate_def, fp_translate_def, astTheory.getOpClass_def,
fpState_component_equality,
semanticPrimitivesTheory.state_component_equality,
astTheory.isFpBool_def, semanticPrimitivesTheory.do_app_def])
>- (
Cases_on ‘exps’ \\ fs[] \\ rveq
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[])
\\ disch_then $ qspec_then ‘st’ mp_tac \\ fs[do_app_def]
\\ strip_tac
\\ gs[fpState_component_equality,
semanticPrimitivesTheory.state_component_equality])
>- (
fs [quantHeuristicsTheory.LENGTH_TO_EXISTS_CONS] \\ rveq
\\ rename1 ‘isFpArithExpList [e1; e2]’
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[] \\ metis_tac[])
\\ disch_then (fn th => qspec_then ‘e1’ strip_assume_tac th
\\ qspec_then ‘e2’ strip_assume_tac th)
\\ gs[]
\\ simp[Once evaluate_cons]
\\ pop_assum $ qspec_then ‘st’ mp_tac \\ impl_tac \\ fs[]
\\ strip_tac \\ gs[]
\\ first_x_assum $ qspec_then ‘st with fp_state := st.fp_state with choices := choices’ mp_tac \\ impl_tac \\ fs[]
\\ rpt strip_tac
\\ fs[do_app_def, fpState_component_equality,
semanticPrimitivesTheory.state_component_equality])
>- (
fs [quantHeuristicsTheory.LENGTH_TO_EXISTS_CONS] \\ rveq
\\ rename1 ‘isFpArithExpList [e1; e2; e3]’
\\ simp[Once evaluate_def, astTheory.getOpClass_def, astTheory.isFpBool_def]
\\ first_x_assum (qspec_then ‘env’ mp_tac) \\ impl_tac
>- (fs[] \\ metis_tac[])
\\ disch_then (fn th => qspec_then ‘e1’ strip_assume_tac th
\\ qspec_then ‘e2’ strip_assume_tac th
\\ qspec_then ‘e3’ strip_assume_tac th)
\\ fs[]
\\ simp[Once evaluate_cons]
\\ last_x_assum $ qspec_then ‘st’ mp_tac \\ impl_tac \\ fs[]
\\ rpt strip_tac \\ gs[]
\\ simp[Once evaluate_def, Once evaluate_cons]
\\ first_x_assum $ qspec_then ‘st with fp_state := st.fp_state with choices := choices’ mp_tac
\\ impl_tac \\ fs[]
\\ rpt strip_tac \\ gs[]
\\ first_x_assum $ qspec_then ‘st with fp_state := st.fp_state with choices := choices'’ mp_tac
\\ impl_tac \\ fs[]
\\ rpt strip_tac \\ gs[]
\\ fs[do_app_def, astTheory.getOpClass_def, fpState_component_equality,
semanticPrimitivesTheory.state_component_equality])
QED
Theorem isFpArithExp_all_lookup:
∀ lhs e subst init.
isFpArithExp e ∧
(∀ n eSub.
substLookup init n = SOME eSub ⇒
isFpArithExp eSub) ∧
matchesFPexp lhs e init = SOME subst ⇒
∀ n eSub.
substLookup subst n = SOME eSub ⇒
isFpArithExp eSub
Proof
Induct_on ‘lhs’ \\ rpt strip_tac
\\ fs[matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[isFpArithExp_def]
>- (res_tac)
>- (fs[substLookup_substAdd_alt] \\ Cases_on ‘n = n'’ \\ fs[] \\ res_tac)
>- (res_tac)
>- (res_tac)
>- (
first_x_assum drule
\\ disch_then $ qspecl_then [‘subst’, ‘s1’, ‘n’, ‘eSub’] mp_tac
\\ impl_tac \\ fs[]
\\ rpt strip_tac \\ last_x_assum $ irule
\\ qexistsl_tac [‘e1’, ‘init’, ‘n'’, ‘s1’] \\ fs[]
\\ first_x_assum MATCH_ACCEPT_TAC)
>- (
first_x_assum drule
\\ disch_then $ qspecl_then [‘subst’, ‘s2’, ‘n’, ‘eSub’] mp_tac
\\ impl_tac \\ fs[]
\\ qpat_x_assum ‘matchesFPexp _ e3 _ = SOME _’ kall_tac
\\ qpat_x_assum ‘isFpArithExp e3’ kall_tac
\\ rpt strip_tac
\\ first_x_assum drule
\\ disch_then $ qspecl_then [‘s2’, ‘s1’, ‘n'’, ‘eSub'’] mp_tac
\\ impl_tac \\ fs[]
\\ qpat_x_assum ‘matchesFPexp _ e2 _ = SOME _’ kall_tac
\\ qpat_x_assum ‘isFpArithExp e2’ kall_tac
\\ rpt strip_tac
\\ first_x_assum drule
\\ disch_then $ qspecl_then [‘s1’, ‘init’, ‘n''’, ‘eSub''’] mp_tac
\\ impl_tac \\ fs[]
\\ first_x_assum MATCH_ACCEPT_TAC)
QED
Theorem match_preserves_FV_lookup:
∀ lhs e subst init P.
(∀ x. x IN FV e ⇒ P x) ∧
(∀ n eSub.
substLookup init n = SOME eSub ⇒
∀ x. x IN FV (eSub) ⇒ P x) ∧
matchesFPexp lhs e init = SOME subst ⇒
(∀ n eSub.
substLookup subst n = SOME eSub ⇒
∀ x. x IN FV (eSub) ⇒ P x)
Proof
Induct_on ‘lhs’ \\ rpt strip_tac
>- (
fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[] \\ res_tac)
>- (
fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[] \\ res_tac
\\ fs[substLookup_substAdd_alt] \\ Cases_on ‘n = n'’ \\ fs[] \\ res_tac)
>- (
fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[] \\ res_tac)
>- (
fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[]
\\ first_x_assum $ qspecl_then [‘e2’, ‘subst’, ‘s1’, ‘P’] mp_tac
\\ impl_tac \\ fs[]
>- (
first_x_assum (qspecl_then [‘e1’, ‘s1’, ‘init’, ‘P’] mp_tac)
\\ impl_tac \\ fs[]
\\ first_x_assum MATCH_ACCEPT_TAC)
\\ rpt strip_tac \\ res_tac \\ fs[])
>- (
qpat_x_assum ‘matchesFPexp _ _ _ = SOME _’ mp_tac
\\ simp[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rpt strip_tac \\ rveq \\ fs[]
\\ first_x_assum $ qspecl_then [‘e3’, ‘subst’, ‘s2’, ‘P’] mp_tac
\\ impl_tac \\ fs[]
>- (
first_x_assum (qspecl_then [‘e2’, ‘s2’, ‘s1’, ‘P’] mp_tac)
\\ impl_tac \\ fs[]
\\ first_x_assum (qspecl_then [‘e1’, ‘s1’, ‘init’, ‘P’] mp_tac)
\\ impl_tac \\ fs[]
\\ first_x_assum MATCH_ACCEPT_TAC)
\\ rpt strip_tac \\ res_tac \\ fs[])
>- (
fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[]
\\ first_x_assum $ qspecl_then [‘e2’, ‘subst’, ‘s1’, ‘P’] mp_tac
\\ impl_tac \\ fs[]
>- (
first_x_assum (qspecl_then [‘e1’, ‘s1’, ‘init’, ‘P’] mp_tac)
\\ impl_tac \\ fs[]
\\ first_x_assum MATCH_ACCEPT_TAC)
\\ rpt strip_tac \\ res_tac \\ fs[])
\\ fs[Once matchesFPexp_def, CaseEq"exp", CaseEq"op", CaseEq"list", CaseEq"lit",
CaseEq"option"]
\\ rveq \\ fs[] \\ res_tac
QED
Theorem match_preserves_FV:
∀ rhs lhs e eNew subst init P.
(∀ x. x IN FV e ⇒ P x) ∧
(∀ n eSub.
substLookup init n = SOME eSub ⇒
∀ x. x IN FV (eSub) ⇒ P x) ∧
matchesFPexp lhs e init = SOME subst ∧
appFPexp rhs subst = SOME eNew ⇒
∀ x. x IN FV (eNew) ⇒ P x
Proof
Induct_on ‘rhs’
\\ rewrite_tac[appFPexp_def] \\ simp[CaseEq "option"] \\ rpt strip_tac
\\ rveq \\ pop_assum mp_tac
\\ rewrite_tac[semanticPrimitivesPropsTheory.FV_def, IN_UNION]
\\ imp_res_tac match_preserves_FV_lookup
\\ rpt strip_tac \\ res_tac \\ fs[]
QED
Theorem rewrite_preserves_FV:
∀ rws e eNew P.
(∀ x. x IN FV e ⇒ P x) ∧
rewriteFPexp rws e = eNew ⇒
∀ x. x IN FV eNew ⇒ P x
Proof
Induct_on ‘rws’ \\ gs[rewriteFPexp_def]
\\ rpt strip_tac \\ Cases_on ‘h’ \\ gs[rewriteFPexp_def]
\\ pop_assum mp_tac \\ COND_CASES_TAC \\ gs[]
\\ TOP_CASE_TAC \\ gs[]
>- (first_x_assum $ qspecl_then [‘e’, ‘P’] mp_tac \\ impl_tac \\ gs[])
\\ TOP_CASE_TAC \\ gs[]
>- (first_x_assum $ qspecl_then [‘e’, ‘P’] mp_tac \\ impl_tac \\ gs[])
\\ strip_tac
\\ first_x_assum $ qspecl_then [‘x''’, ‘P’] mp_tac \\ impl_tac \\ gs[]
\\ qspecl_then [‘r’, ‘q’, ‘e’, ‘x''’, ‘x'’, ‘[]’, ‘P’] mp_tac match_preserves_FV
\\ impl_tac \\ gs[substLookup_def]
QED
Theorem isFpArithExp_match_preserved:
∀ rhs lhs e subst eNew.
isFpArithExp e ∧
isFpArithPat rhs ∧
matchesFPexp lhs e [] = SOME subst ⇒
appFPexp rhs subst = SOME eNew ⇒
isFpArithExp eNew
Proof
Induct_on ‘rhs’ \\ fs[appFPexp_def, isFpArithExp_def, isFpArithPat_def]
>- (rpt strip_tac \\ drule isFpArithExp_all_lookup
\\ disch_then $ qspecl_then [‘lhs’, ‘subst’, ‘[]’, ‘n’, ‘eNew’] mp_tac
\\ impl_tac \\ gs[substLookup_def])
>- (rpt strip_tac \\ rveq \\ fs[isFpArithExp_def]
\\ first_x_assum drule \\ rpt (disch_then drule) \\ fs[])
>- (rpt strip_tac \\ fs[CaseEq"option"]
\\ rveq \\ fs[isFpArithExp_def]
\\ conj_tac
>- (last_x_assum drule \\ rpt (disch_then drule) \\ fs[])
\\ first_x_assum drule \\ rpt (disch_then drule) \\ fs[])
>- (rpt strip_tac \\ fs[CaseEq"option"]
\\ rveq \\ fs[isFpArithExp_def]
\\ rpt conj_tac
>- (last_x_assum drule \\ rpt (disch_then drule) \\ fs[])
>- (last_x_assum kall_tac \\ last_x_assum drule
\\ rpt (disch_then drule) \\ fs[])
\\ first_x_assum drule \\ rpt (disch_then drule) \\ fs[])
QED
Theorem isFpArithExp_rewrite_preserved:
∀ rws e.
rewriteFPexp rws e ≠ e ⇒
isFpArithExp (rewriteFPexp rws e) ∧
isFpArithExp e
Proof
Induct_on ‘rws’ \\ gs[rewriteFPexp_def]
\\ rpt gen_tac \\ Cases_on ‘h’
\\ gs[rewriteFPexp_def]
\\ COND_CASES_TAC \\ gs[]
\\ rpt (TOP_CASE_TAC \\ gs[])
\\ ‘isFpArithExp x'’
by (drule isFpArithExp_match_preserved
\\ disch_then $ qspecl_then [‘r’, ‘q’, ‘x’, ‘x'’] mp_tac
\\ impl_tac \\ fs[])
\\ Cases_on ‘rewriteFPexp rws x' ≠ x'’ \\ gs[]
QED
Theorem rewriteFPexp_returns_fp:
∀ (st:'a semanticPrimitives$state) st2 e lhs rhs env eOpt r.
(∀ x.
x IN FV (e) ⇒
∃ fp.
nsLookup env.v x = SOME (FP_WordTree fp)) ∧
isPureExp e ∧
isFpArithExp e ∧
rewriteFPexp [(lhs,rhs)] e = eOpt ∧
evaluate st env [eOpt] = (st2, Rval [r]) ⇒
∃ fp. r = (FP_WordTree fp)
Proof
rpt gen_tac \\ gs[rewriteFPexp_def] \\ rpt (TOP_CASE_TAC \\ fs[])
\\ rpt strip_tac \\ rveq
>~ [‘appFPexp rhs subst = SOME eOpt’]
>- (
‘isFpArithExp eOpt’
by (drule isFpArithExp_match_preserved
\\ rpt (disch_then drule) \\ fs[])
\\ ‘∀ x. x IN FV eOpt ⇒
∃ r fp.
nsLookup env.v x = SOME (FP_WordTree fp)’
by (
qspecl_then [‘rhs’, ‘lhs’, ‘e’, ‘eOpt’, ‘subst’, ‘[]’,
‘λ x. ∃ r fp. nsLookup env.v x = SOME (FP_WordTree fp)’]
mp_tac match_preserves_FV
\\ impl_tac \\ fs[substLookup_def])
\\ drule $ CONJUNCT1 isFpArithExp_matched_evaluates
\\ disch_then (qspecl_then [‘env’, ‘st’] strip_assume_tac)
\\ gs[])
\\ drule $ CONJUNCT1 isFpArithExp_matched_evaluates
\\ disch_then (qspecl_then [‘env’, ‘st’] strip_assume_tac)
\\ gs[]
QED
Theorem rewriteFPexp_returns_real:
∀ (st:'a semanticPrimitives$state) st2 e lhs rhs env eOpt r.
(∀ x.
x IN FV (e) ⇒
∃ r.
nsLookup env.v x = SOME (Real r)) ∧
isPureExp e ∧
isFpArithExp e ∧
rewriteFPexp [(lhs,rhs)] e = eOpt ∧
st.fp_state.real_sem ∧
evaluate st env [realify eOpt] = (st2, Rval [r]) ⇒
∃ rn. r = Real rn
Proof
rpt gen_tac \\ gs[rewriteFPexp_def] \\ rpt (TOP_CASE_TAC \\ fs[])
\\ rpt strip_tac \\ rveq
>~ [‘appFPexp rhs subst = SOME eOpt’]
>- (
‘isFpArithExp eOpt’
by (drule isFpArithExp_match_preserved
\\ rpt (disch_then drule) \\ fs[])
\\ ‘∀ x. x IN FV eOpt ⇒
∃ r.
nsLookup env.v x = SOME (Real r)’
by (
qspecl_then [‘rhs’, ‘lhs’, ‘e’, ‘eOpt’, ‘subst’, ‘[]’,
‘λ x. ∃ r. nsLookup env.v x = SOME (Real r)’]
mp_tac match_preserves_FV
\\ impl_tac \\ fs[substLookup_def])
\\ drule $ CONJUNCT1 isFpArithExp_matched_evaluates_real
\\ disch_then (qspecl_then [‘env’, ‘st’] strip_assume_tac)
\\ gs[])
\\ drule $ CONJUNCT1 isFpArithExp_matched_evaluates_real
\\ disch_then (qspecl_then [‘env’, ‘st’] strip_assume_tac)
\\ gs[]
QED
Theorem matchExpr_preserving:
! p.
(! e s1 s2.
matchesFPexp p e s1 = SOME s2 ==>
substMonotone s1 s2)
Proof
Induct_on `p`
\\ simp[Once matchesFPexp_def, option_case_eq]
\\ rpt gen_tac
\\ TRY (rpt strip_tac \\ rveq \\ fs[substMonotone_def]
\\ rpt strip_tac \\ fs[substLookup_substAdd_alt]
\\ TOP_CASE_TAC \\ fs[] \\ NO_TAC)
\\ rpt (TOP_CASE_TAC \\ fs[substMonotone_def])
\\ rpt strip_tac \\ res_tac
\\ rveq \\ first_x_assum irule \\ fs[]
QED
Theorem appFPexp_weakening:
! p.
(! e s1 s2.
substMonotone s1 s2 /\
appFPexp p s1 = SOME e ==>
appFPexp p s2 = SOME e)
Proof
Induct_on `p`
\\ rpt strip_tac \\ fs[]
\\ fs[appFPexp_def, pair_case_eq, option_case_eq, substMonotone_def]
\\ res_tac \\ fs[]
QED
Theorem subst_pat_is_exp:
! p e s1 s2.
matchesFPexp p e s1 = SOME s2 ==>
appFPexp p s2 = SOME e
Proof
Induct_on `p`
\\ rpt gen_tac
\\ simp[Once matchesFPexp_def, option_case_eq]
\\ rpt (TOP_CASE_TAC \\ fs[]) \\ rpt strip_tac \\ rveq
\\ fs[Once appFPexp_def]
\\ simp [substLookup_substAdd_alt]
\\ res_tac \\ fs[]
\\ imp_res_tac matchExpr_preserving
\\ imp_res_tac (SIMP_RULE std_ss [FORALL_AND_THM] appFPexp_weakening)
\\ res_tac \\ fs[]
QED
val _ = export_theory();