-
Notifications
You must be signed in to change notification settings - Fork 84
/
cfLetAutoScript.sml
700 lines (620 loc) · 20.5 KB
/
cfLetAutoScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
(*
Definitions and lemmas that support the implementation of the
xlet_auto tactic.
*)
open preamble ml_translatorTheory cfTacticsLib set_sepTheory cfHeapsBaseTheory cfStoreTheory Satisfy
val _ = new_theory "cfLetAuto";
(* Rewrite rules for the int_of_num & operator*)
Theorem INT_OF_NUM_ADD:
!(x:num) (y:num).(&x) + &y = &(x+y)
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_TIMES:
!(x:num) (y:num).(&x) * &y = &(x*y)
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_LE:
!(x:num) (y:num). (&x <= (&y):int) = (x <= y)
Proof
rw[]
QED
Theorem INT_OF_NUM_LESS:
!(x:num) (y:num). (&x < (&y):int) = (x < y)
Proof
rw[]
QED
Theorem INT_OF_NUM_GE:
!(x:num) (y:num). (&x >= (&y):int) = (x >= y)
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_GREAT:
!(x:num) (y:num). (&x > (&y):int) = (x > y)
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_EQ:
!(x:num) (y:num). (&x = (&y):int) = (x = y)
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_SUBS:
!(x:num) (y:num) (z:num). (&x - (&y):int = &z) <=> (x - y = z) /\ y <= x
Proof
rw[] >> intLib.ARITH_TAC
QED
Theorem INT_OF_NUM_SUBS_2:
!(x:num) (y:num). y <= x ==> (&x - (&y):int = &(x - y))
Proof
rw[] >> fs[int_arithTheory.INT_NUM_SUB]
QED
(* TODO: move that *)
Theorem SPLIT_SUBSET:
SPLIT s (u, v) ==> u SUBSET s /\ v SUBSET s
Proof
rw[SPLIT_def] >> fs[SUBSET_UNION]
QED
(* Predicate stating that a heap is valid *)
Definition HEAP_FROM_STATE_def:
HEAP_FROM_STATE s = ?(f : ffi ffi_proj) st. s = (st2heap f st)
End
Definition VALID_HEAP_def:
VALID_HEAP s = ?(f : ffi ffi_proj) st. s SUBSET (st2heap f st)
End
Theorem VALID_HEAP_SUBSET:
VALID_HEAP s1 ==> s2 SUBSET s1 ==> VALID_HEAP s2
Proof
rw[VALID_HEAP_def] >> metis_tac[SUBSET_TRANS]
QED
(* A theorem to remove the pure facts from the heap predicates *)
Theorem HCOND_EXTRACT:
((&A * H) s <=> A /\ H s) /\ ((H * &A) s <=> H s /\ A) /\ ((H * &A * H') s <=> (H * H') s /\ A)
Proof
rw[] >-(fs[STAR_def, STAR_def, cond_def, SPLIT_def])
>-(fs[STAR_def, STAR_def, cond_def, SPLIT_def]) >>
fs[STAR_def, STAR_def, cond_def, SPLIT_def] >> EQ_TAC >-(rw [] >-(instantiate) >> rw[]) >> rw[]
QED
(* Definitions and theorems used to compare two heap conditions *)
Definition HPROP_INJ_def:
HPROP_INJ H1 H2 PF <=>
!s. VALID_HEAP s ==> !G1 G2. (H1 * G1) s ==> ((H2 * G2) s <=> (&PF * H1 * G2) s)
End
(* TODO: use that *)
(*
Definition HPROP_FRAME_IMP_def:
HPROP_FRAME_IMP H1 H2 Frame <=> ?s. VALID_HEAP s /\ H1 s /\ (H2 * Frame) s
End
Theorem HPROP_FRAME_HCOND:
HPROP_FRAME_IMP H1 (&PF * H2) Frame <=> PF /\ HPROP_FRAME_IMP H1 H2 Frame
Proof
rw[HPROP_FRAME_IMP_def, GSYM STAR_ASSOC, HCOND_EXTRACT, GSYM RIGHT_EXISTS_AND_THM] >>
metis_tac[]
QED *)
(* The following lemmas aim to prove that a valid heap can not have one pointer pointing to two different values *)
Triviality PTR_MEM_LEM:
!s l xv H. (l ~~>> xv * H) s ==> Mem l xv IN s
Proof
rw[STAR_def, SPLIT_def, cell_def, one_def] >> fs[]
QED
(* Intermediate lemma to reason on subsets of heaps *)
Triviality HEAP_SUBSET_GC:
!s s' H. s SUBSET s' ==> H s ==> (H * GC) s'
Proof
rw[STAR_def] >>
instantiate >>
fs[SPLIT_EQ, GC_def, SEP_EXISTS] >>
qexists_tac `\x. T` >>
rw[]
QED
(* UNIQUE_PTRS property for a heap converted from a state *)
Triviality UNIQUE_PTRS_HFS:
!s. HEAP_FROM_STATE s ==> !l xv xv' H H'. (l ~~>> xv * H) s /\ (l ~~>> xv' * H') s ==> xv' = xv
Proof
rw[HEAP_FROM_STATE_def] >>
fs[st2heap_def] >>
IMP_RES_TAC PTR_MEM_LEM >>
fs[UNION_DEF]
>-(IMP_RES_TAC store2heap_IN_unique_key)>>
IMP_RES_TAC Mem_NOT_IN_ffi2heap
QED
Theorem UNIQUE_PTRS:
!s. VALID_HEAP s ==> !l xv xv' H H'. (l ~~>> xv * H) s /\ (l ~~>> xv' * H') s ==> xv' = xv
Proof
rw[VALID_HEAP_def] >>
IMP_RES_TAC HEAP_SUBSET_GC >>
fs[GSYM STAR_ASSOC] >>
metis_tac[HEAP_FROM_STATE_def, UNIQUE_PTRS_HFS]
QED
Theorem PTR_IN_HEAP:
!l xv H s. (REF (Loc l) xv * H) s ==> Mem l (Refv xv) IN s
Proof
fs[STAR_def, SPLIT_def] >>
fs[REF_def, SEP_EXISTS] >>
fs[HCOND_EXTRACT] >>
fs[cell_def, one_def] >>
rw[] >>
last_x_assum (fn x => rw[GSYM x])
QED
fun prove_hprop_inj_tac thm = rw[HPROP_INJ_def, SEP_CLAUSES, GSYM STAR_ASSOC, HCOND_EXTRACT] >>
metis_tac[thm];
Theorem PTR_HPROP_INJ:
!l xv xv'. HPROP_INJ (l ~~>> xv) (l ~~>> xv') (xv' = xv)
Proof
prove_hprop_inj_tac UNIQUE_PTRS
QED
(* Unicity results for pointers *)
val solve_unique_refs = (rw[] >> qspec_then `s:heap` ASSUME_TAC UNIQUE_PTRS >>
fs[REF_def, ARRAY_def, W8ARRAY_def, SEP_CLAUSES, SEP_EXISTS_THM] >>
`!A H1 H2. (&A * H1 * H2) s <=> A /\ (H1 * H2) s` by metis_tac[HCOND_EXTRACT, STAR_COMM] >>
POP_ASSUM (fn x => fs[x]) >> rw[] >> POP_ASSUM IMP_RES_TAC >> fs[]);
Theorem UNIQUE_REFS:
!s r xv xv' H H'. VALID_HEAP s ==> (r ~~> xv * H) s /\ (r ~~> xv' * H') s ==> xv' = xv
Proof
solve_unique_refs
QED
Theorem UNIQUE_ARRAYS:
!s a av av' H H'. VALID_HEAP s ==> (ARRAY a av * H) s /\ (ARRAY a av' * H') s ==> av' = av
Proof
solve_unique_refs
QED
Theorem UNIQUE_W8ARRAYS:
!s a av av' H H'. VALID_HEAP s ==> (W8ARRAY a av * H) s /\ (W8ARRAY a av' * H') s ==> av' = av
Proof
solve_unique_refs
QED
Theorem REF_HPROP_INJ:
!r xv xv'. HPROP_INJ (REF r xv) (REF r xv') (xv' = xv)
Proof
prove_hprop_inj_tac UNIQUE_REFS
QED
Theorem ARRAY_HPROP_INJ:
!a av av'. HPROP_INJ (ARRAY a av) (ARRAY a av') (av' = av)
Proof
prove_hprop_inj_tac UNIQUE_ARRAYS
QED
Theorem W8ARRAY_HPROP_INJ:
!a av av'. HPROP_INJ (W8ARRAY a av) (W8ARRAY a av') (av' = av)
Proof
prove_hprop_inj_tac UNIQUE_W8ARRAYS
QED
(* A valid heap must have proper ffi partitions *)
Triviality NON_OVERLAP_FFI_PART_HFS:
!s. HEAP_FROM_STATE s ==>
!s1 u1 ns1 ts1 s2 u2 ns2 ts2. FFI_part s1 u1 ns1 ts1 IN s /\ FFI_part s2 u2 ns2 ts2 IN s /\ (?p. MEM p ns1 /\ MEM p ns2) ==>
s2 = s1 /\ u2 = u1 /\ ns2 = ns1 /\ ts2 = ts1
Proof
rpt (FIRST[GEN_TAC, DISCH_TAC]) >>
fs[HEAP_FROM_STATE_def, st2heap_def, UNION_DEF] >>
`FFI_part s1 u1 ns1 ts1 ∈ ffi2heap f st.ffi` by (rw[] >> fs[FFI_part_NOT_IN_store2heap]) >>
`FFI_part s2 u2 ns2 ts2 ∈ ffi2heap f st.ffi` by (rw[] >> fs[FFI_part_NOT_IN_store2heap]) >>
Cases_on `f` >>
Q.RENAME_TAC [`(q, r)`, `(proj, parts)`] >>
fs[ffi2heap_def] >>
Cases_on `parts_ok st.ffi (proj, parts)`
>-(
fs[] >>
fs[parts_ok_def] >>
sg `ns2 = ns1`
>-(
`MEM ns1 (MAP FST parts)` by
(
`?n. n < LENGTH parts /\ (ns1, u1) = EL n parts` by (IMP_RES_TAC MEM_EL >> SATISFY_TAC) >>
`FST (EL n parts) = ns1` by FIRST_ASSUM (fn x => fs[GSYM x, FST]) >>
`n < LENGTH (MAP FST parts)` by fs[LENGTH_MAP] >>
`EL n (MAP FST parts) = FST (EL n parts)` by fs[EL_MAP] >>
metis_tac[GSYM MEM_EL]
) >>
`MEM ns2 (MAP FST parts)` by
(
`?n. n < LENGTH parts /\ (ns2, u2) = EL n parts` by (IMP_RES_TAC MEM_EL >> SATISFY_TAC) >>
`FST (EL n parts) = ns2` by FIRST_ASSUM (fn x => fs[GSYM x, FST]) >>
`n < LENGTH (MAP FST parts)` by fs[LENGTH_MAP] >>
`EL n (MAP FST parts) = FST (EL n parts)` by fs[EL_MAP] >>
metis_tac[GSYM MEM_EL]
) >>
metis_tac[cfTheory.ALL_DISTINCT_FLAT_MEM_IMP]
) >>
(* Simplify the goal *)
fs[] >>
(* s2 = s1 *)
`FLOOKUP (proj st.ffi.ffi_state) p = SOME s1` by metis_tac[] >>
`FLOOKUP (proj st.ffi.ffi_state) p = SOME s2` by metis_tac[] >>
fs[] >>
(* u2 = u1 *)
IMP_RES_TAC ALL_DISTINCT_FLAT_FST_IMP
) >>
fs[]
QED
Theorem NON_OVERLAP_FFI_PART:
!s. VALID_HEAP s ==>
!s1 u1 ns1 ts1 s2 u2 ns2 ts2. FFI_part s1 u1 ns1 ts1 IN s /\ FFI_part s2 u2 ns2 ts2 IN s /\ (?p. MEM p ns1 /\ MEM p ns2) ==>
s2 = s1 /\ u2 = u1 /\ ns2 = ns1 /\ ts2 = ts1
Proof
rpt (FIRST[GEN_TAC, DISCH_TAC]) >>
fs[VALID_HEAP_def] >>
`HEAP_FROM_STATE (st2heap f st)` by metis_tac[GSYM HEAP_FROM_STATE_def] >>
IMP_RES_TAC SUBSET_DEF >>
IMP_RES_TAC NON_OVERLAP_FFI_PART_HFS >>
rw[]
QED
(* A minor lemma *)
Triviality FFI_PORT_IN_HEAP_LEM:
!s u ns events H h. (one (FFI_part s u ns events) * H) h ==> FFI_part s u ns events IN h
Proof
rw[one_def, STAR_def, SPLIT_def, IN_DEF, UNION_DEF] >> rw[]
QED
(* Another important theorem *)
Theorem FRAME_UNIQUE_IO:
!s. VALID_HEAP s ==>
!s1 u1 ns1 s2 u2 ns2 H1 H2.
(IO s1 u1 ns1 * H1) s /\ (IO s2 u2 ns2 * H2) s ==>
(?pn. MEM pn ns1 /\ MEM pn ns2) ==>
s2 = s1 /\ u2 = u1 /\ ns2 = ns1
Proof
rpt (FIRST[GEN_TAC, DISCH_TAC]) >>
fs[IO_def, SEP_CLAUSES, SEP_EXISTS_THM] >>
full_simp_tac (std_ss++sep_cond_ss) [cond_STAR] >>
IMP_RES_TAC FFI_PORT_IN_HEAP_LEM >>
IMP_RES_TAC NON_OVERLAP_FFI_PART >>
fs[]
QED
Theorem IO_HPROP_INJ:
!s1 u1 ns1 s2 u2 ns2 H1 H2. (?pn. MEM pn ns1 /\ MEM pn ns2) ==>
HPROP_INJ (IO s1 u1 ns1) (IO s2 u2 ns2) (s2 = s1 /\ u2 = u1 /\ ns2 = ns1)
Proof
rw[HPROP_INJ_def] >>
fs[IO_def, GSYM STAR_ASSOC, SEP_CLAUSES, SEP_EXISTS_THM, HCOND_EXTRACT] >>
metis_tac[FFI_PORT_IN_HEAP_LEM, NON_OVERLAP_FFI_PART]
QED
(* Theorems and rewrites for REPLICATE and LIST_REL *)
Theorem APPEND_LENGTH_INEQ:
!l1 l2. LENGTH(l1) <= LENGTH(l1++l2) /\ LENGTH(l2) <= LENGTH(l1++l2)
Proof
Induct >-(strip_tac >> rw[]) >> rw[]
QED
Triviality REPLICATE_APPEND_RIGHT:
a++b = REPLICATE n x ==> b = REPLICATE (LENGTH b) x
Proof
strip_tac >>
`b = DROP (LENGTH a) (a++b)` by simp[GSYM DROP_LENGTH_APPEND] >>
`b = DROP (LENGTH a) (REPLICATE n x)` by POP_ASSUM (fn thm => metis_tac[thm]) >>
`b = REPLICATE (n - (LENGTH a)) x` by POP_ASSUM (fn thm => metis_tac[thm, DROP_REPLICATE]) >>
fs[LENGTH_REPLICATE]
QED
Triviality REPLICATE_APPEND_LEFT:
a++b = REPLICATE n x ==> a = REPLICATE (LENGTH a) x
Proof
strip_tac >> `b = REPLICATE (LENGTH b) x` by metis_tac[REPLICATE_APPEND_RIGHT] >>
`LENGTH b <= n` by metis_tac[APPEND_LENGTH_INEQ, LENGTH_REPLICATE] >>
`REPLICATE n x = REPLICATE (n-(LENGTH b)) x ++ REPLICATE (LENGTH b) x` by simp[REPLICATE_APPEND] >>
POP_ASSUM (fn x => fs[x]) >> POP_ASSUM (fn x => ALL_TAC) >>
`a ++ REPLICATE (LENGTH b) x = REPLICATE (n − LENGTH b) x ++ REPLICATE (LENGTH b) x` by metis_tac[] >>
fs[LENGTH_REPLICATE]
QED
Theorem REPLICATE_APPEND_DECOMPOSE:
a ++ b = REPLICATE n x <=>
a = REPLICATE (LENGTH a) x /\ b = REPLICATE (LENGTH b) x /\ LENGTH a + LENGTH b = n
Proof
EQ_TAC >-(rw[] >-(metis_tac[REPLICATE_APPEND_LEFT]) >-(metis_tac[REPLICATE_APPEND_RIGHT]) >> metis_tac [LENGTH_REPLICATE, LENGTH_APPEND]) >> metis_tac[REPLICATE_APPEND]
QED
Theorem REPLICATE_APPEND_DECOMPOSE_SYM =
CONV_RULE(PATH_CONV "lr" SYM_CONV) REPLICATE_APPEND_DECOMPOSE
Theorem REPLICATE_PLUS_ONE:
REPLICATE (n + 1) x = x::REPLICATE n x
Proof
`n+1 = SUC n` by rw[] >> rw[REPLICATE]
QED
Triviality LIST_REL_DECOMPOSE_RIGHT_recip:
!R. LIST_REL R (a ++ b) x ==> LIST_REL R a (TAKE (LENGTH a) x) /\ LIST_REL R b (DROP (LENGTH a) x)
Proof
strip_tac >> strip_tac >>
`x = TAKE (LENGTH a) x ++ DROP (LENGTH a) x` by rw[TAKE_DROP] >>
`LENGTH (a ++ b) = LENGTH x` by (MATCH_MP_TAC LIST_REL_LENGTH >> rw[]) >>
POP_ASSUM (fn x => CONV_RULE (SIMP_CONV list_ss []) x |> ASSUME_TAC) >>
`LENGTH a <= LENGTH x` by bossLib.DECIDE_TAC >>
metis_tac[LENGTH_TAKE, LIST_REL_APPEND_IMP]
QED
Triviality LIST_REL_DECOMPOSE_RIGHT_imp:
!R. LIST_REL R a (TAKE (LENGTH a) x) /\ LIST_REL R b (DROP (LENGTH a) x) ==> LIST_REL R (a ++ b) x
Proof
rpt strip_tac >>
`x = TAKE (LENGTH a) x ++ DROP (LENGTH a) x` by rw[TAKE_DROP] >>
metis_tac[rich_listTheory.EVERY2_APPEND_suff]
QED
Theorem LIST_REL_DECOMPOSE_RIGHT:
!R. LIST_REL R (a ++ b) x <=> LIST_REL R a (TAKE (LENGTH a) x) /\ LIST_REL R b (DROP (LENGTH a) x)
Proof
strip_tac >> metis_tac[LIST_REL_DECOMPOSE_RIGHT_recip, LIST_REL_DECOMPOSE_RIGHT_imp]
QED
Triviality LIST_REL_DECOMPOSE_LEFT_recip:
!R. LIST_REL R x (a ++ b) ==> LIST_REL R (TAKE (LENGTH a) x) a /\ LIST_REL R (DROP (LENGTH a) x) b
Proof
strip_tac >> strip_tac >>
`x = TAKE (LENGTH a) x ++ DROP (LENGTH a) x` by rw[TAKE_DROP] >>
`LENGTH x = LENGTH (a ++ b)` by (MATCH_MP_TAC LIST_REL_LENGTH >> rw[]) >>
POP_ASSUM (fn x => CONV_RULE (SIMP_CONV list_ss []) x |> ASSUME_TAC) >>
`LENGTH a <= LENGTH x` by bossLib.DECIDE_TAC >>
metis_tac[LENGTH_TAKE, LIST_REL_APPEND_IMP]
QED
Triviality LIST_REL_DECOMPOSE_LEFT_imp:
!R. LIST_REL R (TAKE (LENGTH a) x) a /\ LIST_REL R (DROP (LENGTH a) x) b ==> LIST_REL R x (a ++ b)
Proof
rpt strip_tac >>
`x = TAKE (LENGTH a) x ++ DROP (LENGTH a) x` by rw[TAKE_DROP] >>
metis_tac[rich_listTheory.EVERY2_APPEND_suff]
QED
Theorem LIST_REL_DECOMPOSE_LEFT:
!R. LIST_REL R x (a ++ b) <=> LIST_REL R (TAKE (LENGTH a) x) a /\ LIST_REL R (DROP (LENGTH a) x) b
Proof
strip_tac >> metis_tac[LIST_REL_DECOMPOSE_LEFT_recip, LIST_REL_DECOMPOSE_LEFT_imp]
QED
Theorem HEAD_TAIL:
l <> [] ==> HD l :: TL l = l
Proof
Cases_on `l:'a list` >> rw[listTheory.TL, listTheory.HD]
QED
Theorem HEAD_TAIL_DECOMPOSE_RIGHT:
x::a = b <=> b <> [] /\ x = HD b /\ a = TL b
Proof
rw[] >> EQ_TAC
>-(Cases_on `b:'a list` >-(rw[]) >> rw[listTheory.TL, listTheory.HD, HEAD_TAIL]) >>
rw[HEAD_TAIL]
QED
Theorem HEAD_TAIL_DECOMPOSE_LEFT:
b = x::a <=> b <> [] /\ x = HD b /\ a = TL b
Proof
rw[] >> EQ_TAC
>-(Cases_on `b:'a list` >-(rw[]) >> rw[listTheory.TL, listTheory.HD, HEAD_TAIL]) >>
rw[HEAD_TAIL]
QED
val _ = hide "abs";
(* Theorems used as rewrites for the refinement invariants *)
fun eqtype_unicity_thm_tac x =
let
val assum = MP (SPEC ``abs:'a -> v -> bool`` EqualityType_def |> EQ_IMP_RULE |> fst) x
in
MP_TAC assum
end;
Theorem EQTYPE_UNICITY_R:
!abs x y1 y2. EqualityType abs ==> abs x y1 ==> (abs x y2 <=> y2 = y1)
Proof
rpt strip_tac >> FIRST_ASSUM eqtype_unicity_thm_tac >> metis_tac[]
QED
Theorem EQTYPE_UNICITY_L:
!abs x1 x2 y. EqualityType abs ==> abs x1 y ==> (abs x2 y <=> x2 = x1)
Proof
rpt strip_tac >> FIRST_ASSUM eqtype_unicity_thm_tac >> metis_tac[]
QED
(* Theorems to use LIST_REL A "as a" refinement invariant *)
Definition InjectiveRel_def:
InjectiveRel A = !x1 y1 x2 y2. A x1 y1 /\ A x2 y2 ==> (x1 = x2 <=> y1 = y2)
End
Triviality EQTYPE_INJECTIVEREL:
EqualityType A ==> InjectiveRel A
Proof
rw[InjectiveRel_def, EqualityType_def]
QED
Theorem LIST_REL_INJECTIVE_REL:
!A. InjectiveRel A ==> InjectiveRel (LIST_REL A)
Proof
rpt strip_tac >> SIMP_TAC list_ss [InjectiveRel_def] >> Induct_on `x1`
>-(
rpt strip_tac >>
fs[LIST_REL_NIL] >>
EQ_TAC >>
rw[LIST_REL_NIL] >>
fs[LIST_REL_NIL]
) >>
rpt strip_tac >> fs[LIST_REL_def] >>
Cases_on `x2` >-(fs[LIST_REL_NIL]) >>
Cases_on `y2` >-(fs[LIST_REL_NIL]) >>
rw[] >> fs[LIST_REL_def] >>
EQ_TAC >> (rw[] >-(metis_tac[InjectiveRel_def]) >> metis_tac[])
QED
Theorem LIST_REL_INJECTIVE_EQTYPE:
!A. EqualityType A ==> InjectiveRel (LIST_REL A)
Proof
metis_tac[EQTYPE_INJECTIVEREL, LIST_REL_INJECTIVE_REL]
QED
Theorem LIST_REL_UNICITY_RIGHT:
EqualityType A ==> LIST_REL A a b ==> (LIST_REL A a b' <=> b' = b)
Proof
metis_tac[EQTYPE_INJECTIVEREL, LIST_REL_INJECTIVE_EQTYPE, InjectiveRel_def]
QED
Theorem LIST_REL_UNICITY_LEFT:
EqualityType A ==> LIST_REL A a b ==> (LIST_REL A a' b <=> a' = a)
Proof
metis_tac[EQTYPE_INJECTIVEREL, LIST_REL_INJECTIVE_EQTYPE, InjectiveRel_def]
QED
(* EqualityType proofs *)
Theorem EqualityType_PAIR_TYPE:
EqualityType A ==> EqualityType B ==> EqualityType (PAIR_TYPE A B)
Proof
rw[EqualityType_def]
>-(
Cases_on `x1` >>
fs[PAIR_TYPE_def, no_closures_def] >>
metis_tac[]
) >>
Cases_on `x1` >>
Cases_on `x2` >>
fs[PAIR_TYPE_def, types_match_def, semanticPrimitivesTheory.ctor_same_type_def] >>
metis_tac[]
QED
Triviality LIST_TYPE_no_closure:
!A x xv. EqualityType A ==> LIST_TYPE A x xv ==> no_closures xv
Proof
Induct_on `x`
>-(fs[LIST_TYPE_def, no_closures_def]) >>
rw[LIST_TYPE_def] >>
rw[no_closures_def]
>-(metis_tac[EqualityType_def]) >>
last_assum IMP_RES_TAC
QED
Triviality LIST_TYPE_inj:
!A x1 x2 v1 v2. EqualityType A ==> LIST_TYPE A x1 v1 ==> LIST_TYPE A x2 v2 ==>
(v1 = v2 <=> x1 = x2)
Proof
Induct_on `x1`
>-(
Cases_on `x2` >>
rw[LIST_TYPE_def, EqualityType_def]
) >>
Cases_on `x2` >-(rw[LIST_TYPE_def]) >>
rw[LIST_TYPE_def] >>
last_x_assum IMP_RES_TAC >>
rw[] >>
fs[EqualityType_def] >>
metis_tac[]
QED
val types_match_tac = rpt (CHANGED_TAC (rw[LIST_TYPE_def, types_match_def, semanticPrimitivesTheory.ctor_same_type_def]));
Triviality LIST_TYPE_types_match:
!A x1 x2 v1 v2. EqualityType A ==> LIST_TYPE A x1 v1 ==> LIST_TYPE A x2 v2 ==>
types_match v1 v2
Proof
Induct_on `x1`
>-(
Cases_on `x2` >>
types_match_tac >>
EVAL_TAC
) >>
Cases_on `x2`
>-(types_match_tac >> EVAL_TAC)>>
types_match_tac
>-(metis_tac[EqualityType_def])>>
last_assum IMP_RES_TAC
QED
Theorem EqualityType_LIST_TYPE:
EqualityType A ==> EqualityType (LIST_TYPE A)
Proof
DISCH_TAC >> rw[EqualityType_def]
>-(IMP_RES_TAC LIST_TYPE_no_closure)
>-(IMP_RES_TAC LIST_TYPE_inj) >>
IMP_RES_TAC LIST_TYPE_types_match
QED
(* Some theorems for rewrite rules with the refinement invariants *)
(* Need to write the expand and retract theorems for UNIT_TYPE by hand - otherwise the retract theorem might introduce a variable, for example *)
Theorem UNIT_TYPE_RETRACT:
!v. v = Conv NONE [] <=> UNIT_TYPE () v
Proof
rw[UNIT_TYPE_def]
QED
Theorem UNIT_TYPE_EXPAND:
!u v. UNIT_TYPE u v <=> u = () /\ v = Conv NONE []
Proof
rw[UNIT_TYPE_def]
QED
Theorem NUM_INT_EQ:
(!x y v. INT x v ==> (NUM y v <=> x = &y)) /\
(!x y v. NUM y v ==> (INT x v <=> x = &y)) /\
(!x v w. INT (&x) v ==> (NUM x w <=> w = v)) /\
(!x v w. NUM x v ==> (INT (&x) w <=> w = v))
Proof
fs[INT_def, NUM_def] >> metis_tac[]
QED
(* Some rules used to simplify arithmetic equations (not happy with that: write a conversion instead? *)
Triviality NUM_EQ_lem:
!(a1:num) (a2:num) (b:num). b <= a1 ==> b <= a2 ==> (a1 = a2 <=> a1 - b = a2 - b)
Proof
rw[]
QED
Theorem NUM_EQ_SIMP1:
a1 + (NUMERAL n1)*b = a2 + (NUMERAL n2)*b <=>
a1 + (NUMERAL n1 - (MIN (NUMERAL n1) (NUMERAL n2)))*b = a2 + (NUMERAL n2 - (MIN (NUMERAL n1) (NUMERAL n2)))*b
Proof
rw[MIN_DEF]
>-(
`b*NUMERAL n1 <= a1 + b*NUMERAL n1` by rw[] >>
`b*NUMERAL n1 <= a2 + b*NUMERAL n2` by (
rw[] >>
`b*NUMERAL n2 <= a2 + b*NUMERAL n2` by rw[] >>
`b*NUMERAL n1 <= b*NUMERAL n2` by rw[] >>
bossLib.DECIDE_TAC
) >>
qspecl_then [`a1 + b * NUMERAL n1`, `a2 + b * NUMERAL n2`, `b * NUMERAL n1`] assume_tac NUM_EQ_lem >>
POP_ASSUM (fn x => rw[x]) >>
`b * (NUMERAL n2 - NUMERAL n1) = b * NUMERAL n2 - b * NUMERAL n1` by rw[] >>
POP_ASSUM (fn x => rw[x]) >>
`b*NUMERAL n1 <= b* NUMERAL n2` by rw[] >>
bossLib.DECIDE_TAC
) >>
`b*NUMERAL n1 <= a2 + b*NUMERAL n1` by rw[] >>
`b*NUMERAL n2 <= b*NUMERAL n1` by rw[] >>
`b*NUMERAL n2 <= a1 + b*NUMERAL n1` by rw[] >>
`b*NUMERAL n2 <= a2 + b*NUMERAL n2` by rw[] >>
qspecl_then[`a1 + b * NUMERAL n1`, `a2 + b * NUMERAL n2`, `b * NUMERAL n2`]assume_tac NUM_EQ_lem >>
POP_ASSUM (fn x => rw[x])
QED
Theorem NUM_EQ_SIMP2:
(NUMERAL n1)*b + a1 = (NUMERAL n2)*b + a2 <=>
(NUMERAL n1 - (MIN (NUMERAL n1) (NUMERAL n2)))*b + a1 = (NUMERAL n2 - (MIN (NUMERAL n1) (NUMERAL n2)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP1]
QED
Theorem NUM_EQ_SIMP3:
a1 + (NUMERAL n1)*b = (NUMERAL n2)*b + a2 <=>
a1 + (NUMERAL n1 - (MIN (NUMERAL n1) (NUMERAL n2)))*b = (NUMERAL n2 - (MIN (NUMERAL n1) (NUMERAL n2)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP1]
QED
Theorem NUM_EQ_SIMP4:
(NUMERAL n1)*b + a1 = a2 + (NUMERAL n2)*b <=>
(NUMERAL n1 - (MIN (NUMERAL n1) (NUMERAL n2)))*b + a1 = (NUMERAL n2 - (MIN (NUMERAL n1) (NUMERAL n2)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP1]
QED
Theorem NUM_EQ_SIMP5:
a1 + b = a2 + (NUMERAL n2)*b <=>
a1 + (1 - (MIN 1 (NUMERAL n2)))*b = a2 + (NUMERAL n2 - (MIN 1 (NUMERAL n2)))*b
Proof
`a1 + b = a1 + 1*b` by rw[] >>
POP_ASSUM (fn x => PURE_REWRITE_TAC [x]) >>
metis_tac[NUM_EQ_SIMP1]
QED
Theorem NUM_EQ_SIMP6:
a1 + (NUMERAL n1)*b = a2 + b <=>
a1 + (NUMERAL n1 - (MIN 1 (NUMERAL n1)))*b = a2 + (1 - (MIN 1 (NUMERAL n1)))*b
Proof
`a2 + b = a2 + 1*b` by rw[] >>
POP_ASSUM (fn x => PURE_REWRITE_TAC [x]) >>
metis_tac[NUM_EQ_SIMP1]
QED
Theorem NUM_EQ_SIMP7:
b + a1 = (NUMERAL n2)*b + a2 <=>
(1 - (MIN 1 (NUMERAL n2)))*b + a1 = (NUMERAL n2 - (MIN 1 (NUMERAL n2)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP5]
QED
Theorem NUM_EQ_SIMP8:
(NUMERAL n1)*b + a1 = b + a2 <=>
(NUMERAL n1 - (MIN 1 (NUMERAL n1)))*b + a1 = (1 - (MIN 1 (NUMERAL n1)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP6]
QED
Theorem NUM_EQ_SIMP9:
a1 + b = (NUMERAL n2)*b + a2 <=>
a1 + (1 - (MIN 1 (NUMERAL n2)))*b = (NUMERAL n2 - (MIN 1 (NUMERAL n2)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP5]
QED
Theorem NUM_EQ_SIMP10:
b + a1 = a2 + (NUMERAL n2)*b <=>
(1 - (MIN 1 (NUMERAL n2)))*b + a1 = a2 + (NUMERAL n2 - (MIN 1 (NUMERAL n2)))*b
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP5]
QED
Theorem NUM_EQ_SIMP11:
a1 + (NUMERAL n1)*b = b + a2 <=>
a1 + (NUMERAL n1 - (MIN 1 (NUMERAL n1)))*b = (1 - (MIN 1 (NUMERAL n1)))*b + a2
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP6]
QED
Theorem NUM_EQ_SIMP12:
(NUMERAL n1)*b + a1 = a2 + b <=>
(NUMERAL n1 - (MIN 1 (NUMERAL n1)))*b + a1 = a2 + (1 - (MIN 1 (NUMERAL n1)))*b
Proof
rw[CONV_RULE (SIMP_CONV arith_ss []) NUM_EQ_SIMP6]
QED
val _ = export_theory();