forked from zouxiaochuan/code_ogblsc2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_utils.py
52 lines (44 loc) · 1.43 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
def get_optimizer_params(
model: torch.nn.Module, learning_rate, weight_decay, no_decay_keys=['bias', 'layer_norm']):
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay_keys)],
'lr': learning_rate, 'weight_decay': 0.0 },
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay_keys)],
'lr': learning_rate, 'weight_decay': weight_decay }
]
return optimizer_parameters
def batch_to_device(batch, device):
if isinstance(batch, torch.Tensor):
return batch.to(device)
pass
elif isinstance(batch, dict):
b = dict()
for k, v in batch.items():
if isinstance(v, torch.Tensor):
b[k] = batch_to_device(v, device)
pass
else:
b[k] = v
pass
return b
pass
else:
raise RuntimeError('type not supported')
pass
def dist_loss(pred, gt, mask, rate=False, thr=0, p=1):
mask_ = mask[:, :, None] * mask[:, None, :]
num = torch.sum(mask_)
if p == 2:
diff = (pred - gt) ** 2
pass
else:
diff = torch.abs(pred - gt)
pass
if rate:
diff = diff / (gt + 1e-12)
pass
mask_ = mask_ * (diff > thr)
num = torch.sum(mask_)
loss = torch.sum(diff * mask_) / (num+1e-12)
return loss